People immersed in strong unchanging magnetic fields occasionally report sensing a metallic taste. Some investigators suspect that motion in the constant field could produce a changing flux and a resulting emf that could stimulate nerves in the tongue. We can make a simple model to see if this is reasonable by imagining a somewhat extreme case, Suppose a patient having an MRI is immersed in a 3.0 T field along the axis of his body. He then quickly tips his head to the side, toward his right shoulder, tipping his head by 30° in the rather short time of 0.15 s. Estimate the area of the tongue; then calculate the emf that could be induced in a loop around the outside of the tongue by this motion of the head. How does this emf compare to the approximately 15 mV necessary to trigger an action potential? Does it seem reasonable to suppose that an induced emf is responsible for the noted effect?
People immersed in strong unchanging magnetic fields occasionally report sensing a metallic taste. Some investigators suspect that motion in the constant field could produce a changing flux and a resulting emf that could stimulate nerves in the tongue. We can make a simple model to see if this is reasonable by imagining a somewhat extreme case, Suppose a patient having an MRI is immersed in a 3.0 T field along the axis of his body. He then quickly tips his head to the side, toward his right shoulder, tipping his head by 30° in the rather short time of 0.15 s. Estimate the area of the tongue; then calculate the emf that could be induced in a loop around the outside of the tongue by this motion of the head. How does this emf compare to the approximately 15 mV necessary to trigger an action potential? Does it seem reasonable to suppose that an induced emf is responsible for the noted effect?
People immersed in strong unchanging magnetic fields occasionally report sensing a metallic taste. Some investigators suspect that motion in the constant field could produce a changing flux and a resulting emf that could stimulate nerves in the tongue. We can make a simple model to see if this is reasonable by imagining a somewhat extreme case, Suppose a patient having an MRI is immersed in a 3.0 T field along the axis of his body. He then quickly tips his head to the side, toward his right shoulder, tipping his head by 30° in the rather short time of 0.15 s. Estimate the area of the tongue; then calculate the emf that could be induced in a loop around the outside of the tongue by this motion of the head. How does this emf compare to the approximately 15 mV necessary to trigger an action potential? Does it seem reasonable to suppose that an induced emf is responsible for the noted effect?
Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? Please answer parts a-B. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places. DONT FORGET TO DRAW VECTORS! ONLY USE BASIC FORMULAS TAUGHT IN PHYSICS. distance = speed * time.
Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…
How is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.
Chapter 25 Solutions
Student Workbook for College Physics: A Strategic Approach Volume 1 (Chs. 1-16)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY