Essential University Physics
4th Edition
ISBN: 9780134988566
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 25, Problem 56P
The voltage across a charging capacitor in an RC circuit rises to 1 – 1/e of the battery voltage in 5.0 ms. (a) How long will it take to reach 1 – 1/e3 of the battery voltage? (b) If the capacitor is charging through a 22-kΩ resistor, what’s the capacitance?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If it is required to store 32.9 μC of electric charge in a capacitor in an electric circuit, what should the capacitance of the capacitor be if a voltage supply can apply 4.0 V of voltage to the capacitor? Report the number in the unit of μF
If it takes 5 s for a capacitor to charge to half the battery voltage, through a 10k Ω resistor, what is the capacitance C?
A 2.1-µF capacitor is charged to 12 V and then discharged through a 4.9×106 Ω resistor. How long (in seconds) will it take for the voltage across the capacitor to drop to 3.7 V?
Chapter 25 Solutions
Essential University Physics
Ch. 25.1 - The figure shows three circuits. Which are...Ch. 25.2 - Rank front highest to lowest the voltages across...Ch. 25.2 - The figure shows all four possible combinations of...Ch. 25.2 - The figure shows a circuit with three identical...Ch. 25.3 - Which circuit(s) cannot be analyzed using series...Ch. 25.4 - All resistors in the figure have the same value...Ch. 25.5 - A capacitor is charged to 12 V and then connected...Ch. 25 - Are household electrical outlets connected in...Ch. 25 - Can the voltage across a batterys terminals differ...Ch. 25 - Can the voltage across a batterys terminals he...
Ch. 25 - When the switch in Fig. 25.25 is open, whats the...Ch. 25 - Two identical resistors in series dissipate equal...Ch. 25 - When a large electric load such as a washing...Ch. 25 - How would you connect a pair of equal resistors...Ch. 25 - You have a battery whose voltage and internal...Ch. 25 - A student whos confused about voltage and current...Ch. 25 - A student whos confused about voltage and current...Ch. 25 - Sketch a circuit diagram for a circuit that...Ch. 25 - Sketch a diagram for a circuit consisting of two...Ch. 25 - Resistors R1 and R2 are in series, and the series...Ch. 25 - Whats the emf of a battery that delivers 27 J of...Ch. 25 - A 1.5-V battery stores 4.5 kJ of energy. How long...Ch. 25 - If you accidentally leave your car headlights...Ch. 25 - A 47-k resistor and a 39-k resistor are in...Ch. 25 - What resistance should you place in parallel with...Ch. 25 - A defective starter motor draws 285 A from a car's...Ch. 25 - Find the internal resistance of the battery in...Ch. 25 - When a 9-V battery is temporarily short-circuited,...Ch. 25 - You have a 1.0-, a 2.0-, and a 3.0- resistor. What...Ch. 25 - Find all three currents in the circuit of Fig....Ch. 25 - Prob. 24ECh. 25 - Find all three currents in the circuit of Fig....Ch. 25 - Prob. 26ECh. 25 - An ammeter with 100- resistance is inserted in the...Ch. 25 - A new mechanic foolishly connects an ammeter with...Ch. 25 - Show that the quantity RC has the units of time...Ch. 25 - If capacitance is in F, what will he the units of...Ch. 25 - Show that a capacitor is charged to approximately...Ch. 25 - An uncharged 10-F capacitor and a 470-k resistor...Ch. 25 - Find an expression for the voltage across the...Ch. 25 - Rework Example 25.3. changing the 4.0- Ω resistor...Ch. 25 - Example 25.3: In the circuit of Example 25.3, take...Ch. 25 - Example 25.3: In Fig. 25.27, take R1 = R2 = 33.0 Ω...Ch. 25 - Example 25.3 In Fig. 25.27, take R1 = 220 Ω, R2 =...Ch. 25 - A professional-grade camera flash gets its energy...Ch. 25 - You're reengieering the camera flash of the...Ch. 25 - Defibrillators restore normal heart rhythm by...Ch. 25 - Example 25.5: You’re designing a defibrillator as...Ch. 25 - In Fig. 25.28, all resistors have the same value,...Ch. 25 - In Fig. 25.28, take all resistors to be 1 k Find...Ch. 25 - Three 1.5-V batteries, with internal resistances...Ch. 25 - Prob. 45PCh. 25 - You company is designing a battery-based backup...Ch. 25 - In the circuit of Fig. 25.30, find (a) the current...Ch. 25 - In Fig. 25.30, how much power is dissipated in the...Ch. 25 - Whats the ammeter reading in Fig. 25.31? FIGURE...Ch. 25 - Find all three currents in the circuit of Fig....Ch. 25 - In Example 25.4. ε2, is taken to be +9 V in the...Ch. 25 - The voltage across the 30-k resistor in Fig. 25.33...Ch. 25 - In Fig. 25.34, what are the meter readings when an...Ch. 25 - Prob. 55PCh. 25 - The voltage across a charging capacitor in an RC...Ch. 25 - Youre designing an external defibrillator that...Ch. 25 - A capacitor is charged until it holds 5.0 J of...Ch. 25 - A capacitor is charged until it holds 5.0 J of...Ch. 25 - In Fig. 25.35 the 2.0-F capacitor is charged to...Ch. 25 - For the circuit of Example 25.6, take = 100 V,...Ch. 25 - In Fig. 25.36, the switch is initially open and...Ch. 25 - Prob. 63PCh. 25 - An ammeter with resistance 1.42 is connected...Ch. 25 - In Fig. 25.37, take 1 = 12.0 V, 2 = 6.00 V, 3 =...Ch. 25 - With all values except 2 as given in the preceding...Ch. 25 - The voltage on a charged capacitor is monitored...Ch. 25 - Find the resistance needed in an RC circuit to...Ch. 25 - Suppose the currents into and out of a circuit...Ch. 25 - Show that a battery delivers the most power when...Ch. 25 - Youre writing the instruction manual for a stereo...Ch. 25 - Show that only half the total energy drawn from a...Ch. 25 - Find the equivalent resistance between A and B for...Ch. 25 - Prob. 74PCh. 25 - Obtain an expression for the rate of increase...Ch. 25 - The circuit in Fig. 25.39 extends forever to the...Ch. 25 - Figure 25.40 on the next page shows the voltage...Ch. 25 - Figure 25.41 shows a portion of a circuit used to...Ch. 25 - An electrochemical impulse traveling along the...Ch. 25 - In Fig. 25.27, take R1 = 47 Ω and R2 = 150 Ω....Ch. 25 - Write the node and loop equations for the circuit...Ch. 25 - Youre about to purchase a battery. Normally,...Ch. 25 - In the circuit of Fig. 25.42 the switch is...Ch. 25 - BIO Stray voltage is a serious problem on dairy...Ch. 25 - BIO Stray voltage is a serious problem on dairy...Ch. 25 - BIO Stray voltage is a serious problem on dairy...Ch. 25 - BIO Stray voltage is a serious problem on dairy...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Using the South Atlantic as an example, label the beginning of the normal polarity period C that began 2 millio...
Applications and Investigations in Earth Science (9th Edition)
Choose the best answer to each of the following. Explain your reasoning. The event that triggered the change in...
Cosmic Perspective Fundamentals
Distinguish between the concepts of sexual differentiation and sex determination.
Concepts of Genetics (12th Edition)
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
What type of cut would separate the brain into anterior and posterior parts?
Anatomy & Physiology (6th Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Assume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed pulse duration = 50.0 m/s 2.0 103 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in Figure P18.43. Model the axon as a parallel-plate capacitor and take C = 0A/d and Q = C V to investigate the charge as follows. Use typical values for a cylindrical axon of cell wall thickness d = 1.0 108 m, axon radius r = 1.0 101 m, and cell-wall dielectric constant = 3.0. (a) Calculate the positive charge on the outside of a 0.10-m piece of axon when it is not conducting an electric pulse. How many K+ ions are on the outside of the axon assuming an initial potential difference of 7.0 102 V? Is this a large charge per unit area? Hint: Calculate the charge per unit area in terms of electronic charge e per squared (2). An atom has a cross section of about 1 2 (1 = 1010 m). (b) How much positive charge must flow through the cell membrane to reach the excited state of + 3.0 102 V from the resting state of 7.0 102 V? How many sodium ions (Na+) is this? (c) If it takes 2.0 ms for the Na+ ions to enter the axon, what is the average current in the axon wall in this process? (d) How much energy does it take to raise the potential of the inner axon wall to + 3.0 102 V, starting from the resting potential of 7.0 102 V? Figure P18.43 Problem 43 and 44.arrow_forwardA battery is used to charge a capacitor through a resistor as shown in Figure P27.44. Show that half the energy supplied by the battery appears as internal energy in the resistor and half is stored in the capacitor. Figure P27.44arrow_forwardA circuit includes a capacitor that charges over time. If the resistance of the circuit is 3.0 Ω, the capacitance is 2.2 F, and the potential of the circuit is 5.0 V, what is the charge on the capacitor after a time of 10.0 seconds, assuming the capacitor is initially uncharged?arrow_forward
- A capacitor with capacitance C = 5 µF is charged to a voltage V = 10V. It is then discharged through a resistor R=2 MQ. At what time after the start of the discharge process has the voltage across the capacitor fallen to 1V?arrow_forwardA capacitor of capacitance C-36 µF capacitor is used in conjunction with a motor. How much energy (loules) is stored in t when a voltage V=136 V is applied?arrow_forwardA 30 Ohm resistor and 1.673 F capacitor are connected in series to a 60 V DC voltage source (RC Circuit). What will be the charge stored in the capacitor 4.38 seconds after the series is connected?arrow_forward
- A 6.0 μF capacitor, a 10 μF capacitor, and a 16 μF capacitor are connected in series. What is their equivalent capacitance?arrow_forwardA 10 mF capacitor is charged to a voltage of 200 V and discharged through a resistor. How much energy is given to the resistor during the discharge?arrow_forwardA 10^-8 F capacitor (10 nanofarads) is charged to 100 V and then disconnected. One can model the charge leakage of the capacitor with a RC circuit with no voltage source and the resistance of the air between the capacitor plates. On a cold dry day, the resistance of the air gap is 5 x 10^13 ohms; on a humid day, the resistance is 8 x 10^6 ohms. How long will it take the capacitor voltage to dissipate to half its original value on each day?arrow_forward
- Consider an initially uncharged capacitor in an RC circuit. The resistance is 25,957 Ohms and the capacitance is 555 x 10^-6 F. If the source potential being used to charge the capacitor is 14.8 V, how long after charging begins will the energy stored by the capacitor be 65.5% of its maximum value.arrow_forward(a) Calculate the equivalent capacitance for combination of capacitors shown in the given figure.(b)Calculate the energy stored in the 20 µF capacitor. (c) If the breakdown voltage of each capacitor used in this circuit is 15 volts, what is the breakdown voltage of this circuit?arrow_forwardA 10-7-F capacitor (100 nanofarads) is charged to 100 V and then disconnected. One can model the charge leakage of the capacitor with a RC circuit with no voltage source and the resistance of the air between the capacitor plates. On a cold dry day, the resistance of the air gap is 5x1013 2; on a humid day, the resistance is 8 x 10° 2. How long will it take the capacitor voltage to dissipate to half its original value on each day?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY