Concept explainers
(a)
The velocity of the particles at the instant of closest approach.
(a)
Answer to Problem 55AP
The velocity of the particles at the instant of the closest approach is
Explanation of Solution
Write the expression for the velocity of the closest approach using the law of conservation of energy.
Here,
Conclusion:
Substitute
Therefore, the velocity of the particles at the instant of the closest approach is
(b)
The distance of the closest approach.
(b)
Answer to Problem 55AP
The distance of the closest approach is
Explanation of Solution
Write the expression for the law of conservation of energy.
Here,
Substitute
Here,
Conclusion:
Substitute
Solving further,
Therefore, the distance of the closest approach is
(c)
The velocity of
(c)
Answer to Problem 55AP
The velocity of
Explanation of Solution
Since the collision between the charged particle is elastic. Hence, the expression for the final velocity of the first particle is,
Here,
Conclusion:
Substitute
Therefore, the velocity of the
(d)
The velocity of
(d)
Answer to Problem 55AP
The velocity of
Explanation of Solution
Since the collision between the charged particle is elastic. Hence, the expression for the final velocity of the second particle is,
Here,
Conclusion:
Substitute
Therefore, the velocity of the
Want to see more full solutions like this?
Chapter 25 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- In a scene from The Avengers (the first one) Black Widow is boosted directly upwards by Captain America, where she then grabs on to a Chitauri speeder that is 15.0 feet above her and hangs on. She is in the air for 1.04 s. A) With what initial velocity was Black Widow launched? 1 m = 3.28 ft B) What was Black Widow’s velocity just before she grabbed the speeder? Assume upwards is the positive direction.arrow_forwardIn Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?arrow_forwardA) If Yoshi flings himself downwards at 9.76 miles per hour to hit an enemy 10.5 m below him, how fast is Yoshi traveling when he hits the enemy? 1 mile = 1609 marrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning