Concept explainers
(a)
The proof for
(a)
Answer to Problem 71CP
The electric potential at the point
Explanation of Solution
The following figure shows the diagram of the dipoles and the point
Figure-(1)
The dipole moment’s magnitude is given as.
Here,
Write the equation for the electric potential at the point
Here,
Write the equation for the distance between the positive charge and the point
Write the equation for the distance between the negative charge and the point
Rearrange the equation (II) and (III) to calculate
Expand the above equation binomially and neglect the higher terms to calculate
Substitute
Substitute
Therefore, the electric potential at the point
(b)
The electric field’s radial component
(b)
Answer to Problem 71CP
The electric field’s radial component is
Explanation of Solution
Write the equation for the radial component of the electric field.
Here,
Write the equation for the perpendicular component of the electric field.
Here,
Conclusion:
Substitute
Substitute
Therefore, the electric field’s radial component is
(c)
Whether the results for
(c)
Answer to Problem 71CP
Yes, the results for
Explanation of Solution
Write the equation for
Write the equation for
Conclusion:
Substitute
Substitute
Substitute
Substitute
Therefore, the results for
(d)
Whether the results for
(d)
Answer to Problem 71CP
No, the results for
Explanation of Solution
Write the equation for
Write the equation for
Conclusion:
Substitute
Substitute
Therefore, the results for
(e)
The expression for the electric potential in terms of the Cartesian coordinates.
(e)
Answer to Problem 71CP
The expression for the electric potential in terms of the Cartesian coordinates is
Explanation of Solution
Write the equation for the electric potential.
Conclusion:
Substitute
Therefore, the expression for the electric potential in terms of the Cartesian coordinates is
(f)
The
(f)
Answer to Problem 71CP
The
Explanation of Solution
Write the equation for the
Here,
Write the equation for the
Here,
Conclusion:
Substitute
Substitute
Therefore, the
Want to see more full solutions like this?
Chapter 25 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- A thin conducing plate 2.0 m on a side is given a total charge of 10.0C . (a) What is the electric field 1.0 cm above the plate? (b) What is the force on an electron at this point? (c) Repeat these calculations for a point 2.0 cm above the plate. (d) When the electron moves from 1.0 to 2.0 cm above the plate, how much work is done on it by the electric field?arrow_forwardFigure P24.17 shows a dipole. If the positive particle has a charge of 35.7 mC and the particles are 2.56 mm apart, what is the electric field at point A located 2.00 mm above the dipoles midpoint?arrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = +2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy?arrow_forward
- Two 5.00-nC charged particles are in a uniform electric field with a magnitude of 625 N/C. Each of the particles is moved from point A to point B along two different paths, labeled in Figure P26.65. a. Given the dimensions in the figure, what is the change in the electric potential experienced by the particle that is moved along path 1 (black)? b. What is the change in the electric potential experienced by the particle that is moved along path 2 (red)? c. Is there a path between the points A and B for which the change in the electric potential is different from your answers to parts (a) and (b)? Explain. FIGURE P26.65 Problems 65, 66, and 67.arrow_forwardConsider the charge distribution shown in Figure P23.85. (a) Show that the magnitude of the electric field at the center of any face of the cube has a value of 2.18keq/s2. (b) What is the direction of the electric field at the center of the top face of the cube?arrow_forwardFigure P24.16 shows three charged particles arranged in the xy plane at the coordinates shown, with qA = qB = 3.30 nC and qC = 4.70 nC. What is the electric field due to these particles at the origin? FIGURE P24.16arrow_forward
- At a certain distance from a charged particle, the magnitude of the electric field is 500 V/m and the electric potential is 3.00 kV. (a) What is the distance to the particle? (b) What is the magnitude of the charge?arrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = 2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy as their separations become infinite? FIGURE P26.14 Problems 14, 15, and 16.arrow_forward(a) Find the total electric field at x = 1.00 cm in Figure 18.52(b) given that q =5.00 nC. (b) Find the total electric field at x = 11.00 cm in Figure 18.52(b). (c) If the charges are allowed to move and eventually be brought to rest by friction, what will the final charge configuration be? (That is, will there be a single charge, double charge; etc., and what will its value(s) he?)arrow_forward
- A thin, square, conducting plate 50.0 cm on a side lies in the xy plane. A total charge of 4.00 108 C is placed on the plate. Find (a) the charge density on each face of the plate, (b) the electric field just above the plate, and (c) the electric field just below the plate. You may assume the charge density is uniform.arrow_forwardA particle with charge +q is at the origin. A particle with charge 2q is at x = 2.00 m on the x axis. (a) For what finite value(s) of x is the electric field zero? (b) For what finite value(s) of x is the electric potential zero?arrow_forwardFigure P26.44 shows a rod of length = 1.00 m aligned with the y axis and oriented so that its lower end is at the origin. The charge density on the rod is given by = a + by, with a = 2.00 C/m2 and b = 1.00 C /m2. What is the electric potential at point P with coordinates (0, 25.0 cm)? A table of integrals will aid you in solving this problem.arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning