Concepts of Genetics Plus Mastering Genetics with Pearson eText -- Access Card Package (12th Edition) (What's New in Genetics)
12th Edition
ISBN: 9780134811390
Author: William S. Klug, Michael R. Cummings, Charlotte A. Spencer, Michael A. Palladino, Darrell Killian
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 2PDQ
CONCEPT QUESTION
Review the Chapter Concepts list on page 599. These all center around quantitative inheritance and the study and analysis of polygenic traits. Write a short essay that discusses the difference between the more traditional Mendelian and neo-Mendelian modes of inheritance (qualitative inheritance) and quantitative inheritance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
BIU
A-
== 三E
12 -
Match each of the following examples to the appropriate type of non-Mendelian inheritance.
1. A homozygous recessive genotype for the gene that encodes phenylalanine hydroxylase
(which breaks down the amino acid phenylalanine) causes lighter skin color, a musty
odor, differences in intellectual development, and seizures.
2. In pea plants, alleles of Gene W control flower color, with the dominant allele (W)
leading to purple flower.color, and the recessive allele (w) leading to white flower color.
Usually, a genotype of WW or Ww leads to purple flowers. However, when Gene C is
homozygous recessive, WW or Ww plants always have white flowers.
3. In mallard ducks, feather coloring is controlled by Gene F. A dominant allele (F) leads to
green head feathers, while a recessive allele (f) leads to brown head feathers. In male
mallards, inheritance of one or more F alleles always leads to the green head feather
trait. But female mallards always have brown head feathers,…
Please do part B
What is sickle cell anemia? What is the true inheritance pattern? How did scientists discover the true inheritance pattern?
Explain multiple Alleles using Human Blood Groups as an example.
Demonstrate the understanding of Polygenic Inheritance using an Example. (Skin colour or Height can be used as an example for explanation) .
What is heterozygous advantage? Provide an example to explain the process.
Chapter 25 Solutions
Concepts of Genetics Plus Mastering Genetics with Pearson eText -- Access Card Package (12th Edition) (What's New in Genetics)
Ch. 25 - A homozygous plant with 20-cm-diameter flowers is...Ch. 25 - The following table shows measurements for fiber...Ch. 25 - The following cable gives the percentage of twin...Ch. 25 - At an interview with a genetic counselor, a couple...Ch. 25 - Prob. 2CSCh. 25 - At an interview with a genetic counselor, a couple...Ch. 25 - HOW DO WE KNOW? In this chapter, we focused on a...Ch. 25 - CONCEPT QUESTION Review the Chapter Concepts list...Ch. 25 - Define the following: (a) polygenic, (b) additive...Ch. 25 - A dark-red strain and a white strain of wheat are...
Ch. 25 - Height in humans depends on the additive action of...Ch. 25 - An inbred strain of plants has a mean height of 24...Ch. 25 - Erma and Harvey were a compatible barnyard pair,...Ch. 25 - In the following table, average differences of...Ch. 25 - What kind of heritability estimates (broad sense...Ch. 25 - List as many human traits as you can that are...Ch. 25 - Corn plants from a test plot are measured, and the...Ch. 25 - The following variances were calculated for two...Ch. 25 - The mean and variance of plant height of two...Ch. 25 - Prob. 14PDQCh. 25 - Prob. 15PDQCh. 25 - In an assessment of learning in Drosophila, flies...Ch. 25 - Prob. 17PDQCh. 25 - Prob. 18PDQCh. 25 - In a population of 100 inbred, genotypically...Ch. 25 - Many traits of economic or medical significance...Ch. 25 - A 3-inch plant was crossed with a 15-inch plant,...Ch. 25 - In a cross between a strain of large guinea pigs...Ch. 25 - Type A1B brachydactyly (short middle phalanges) is...Ch. 25 - In a series of crosses between two true-breeding...Ch. 25 - Students in a genetics laboratory began an...Ch. 25 - Prob. 26ESPCh. 25 - Canine hip dysplasia is a quantitative trait that...Ch. 25 - Floral traits in plants often play key roles in...Ch. 25 - In 1988, Horst Wilkens investigated blind...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- A pedigree analysis was performed on the family of a man with schizophrenia. Based on the known concordance statistics, would his MZ twin be at high risk for the disease? Would the twins risk decrease if he were raised in an environment different from that of his schizophrenic brother?arrow_forwardPedigree analysis is a fundamental tool for investigating whether or not a trait is following a Mendelian pattern of inheritance. It can also be used to help identify individuals within a family who may be at risk for the trait. Adam and Sarah, a young couple of Eastern European Jewish ancestry, went to a genetic counselor because they were planning a family and wanted to know what their chances were for having a child with a genetic condition. The genetic counselor took a detailed family history from both of them and discovered several traits in their respective families. Sarahs maternal family history is suggestive of an autosomal dominant pattern of cancer predisposition to breast and ovarian cancer because of the young ages at which her mother and grandmother were diagnosed with their cancers. If a mutant allele that predisposed to breast and ovarian cancer was inherited in Sarahs family, she, her sister, and any of her own future children could be at risk for inheriting this mutation. The counselor told her that genetic testing is available that may help determine if this mutant allele is present in her family members. Adams paternal family history has a very strong pattern of early onset heart disease. An autosomal dominant condition known as familial hypercholesterolemia may be responsible for the large number of deaths from heart disease. As with hereditary breast and ovarian cancer, genetic testing is available to see if Adam carries the mutant allele. Testing will give the couple more information about the chances that their children could inherit this mutation. Adam had a first cousin who died from Tay-Sachs disease (TSD), a fatal autosomal recessive condition most commonly found in people of Eastern European Jewish descent. Because TSD is a recessively inherited disorder, both of his cousins parents must have been heterozygous carriers of the mutant allele. If that is the case, Adams father could be a carrier as well. If Adams father carries the mutant TSD allele, it is possible that Adam inherited this mutation. Because Sarah is also of Eastern European Jewish ancestry, she could also be a carrier of the gene, even though no one in her family has been affected with TSD. If Adam and Sarah are both carriers, each of their children would have a 25% chance of being afflicted with TSD. A simple blood test performed on both Sarah and Adam could determine whether they are carriers of this mutation. If Sarah carries the mutant cancer allele and Adam carries the mutant heart disease allele, what is the chance that they would have a child who is free of both diseases? Are these good odds?arrow_forwardPedigree analysis is a fundamental tool for investigating whether or not a trait is following a Mendelian pattern of inheritance. It can also be used to help identify individuals within a family who may be at risk for the trait. Adam and Sarah, a young couple of Eastern European Jewish ancestry, went to a genetic counselor because they were planning a family and wanted to know what their chances were for having a child with a genetic condition. The genetic counselor took a detailed family history from both of them and discovered several traits in their respective families. Sarahs maternal family history is suggestive of an autosomal dominant pattern of cancer predisposition to breast and ovarian cancer because of the young ages at which her mother and grandmother were diagnosed with their cancers. If a mutant allele that predisposed to breast and ovarian cancer was inherited in Sarahs family, she, her sister, and any of her own future children could be at risk for inheriting this mutation. The counselor told her that genetic testing is available that may help determine if this mutant allele is present in her family members. Adams paternal family history has a very strong pattern of early onset heart disease. An autosomal dominant condition known as familial hypercholesterolemia may be responsible for the large number of deaths from heart disease. As with hereditary breast and ovarian cancer, genetic testing is available to see if Adam carries the mutant allele. Testing will give the couple more information about the chances that their children could inherit this mutation. Adam had a first cousin who died from Tay-Sachs disease (TSD), a fatal autosomal recessive condition most commonly found in people of Eastern European Jewish descent. Because TSD is a recessively inherited disorder, both of his cousins parents must have been heterozygous carriers of the mutant allele. If that is the case, Adams father could be a carrier as well. If Adams father carries the mutant TSD allele, it is possible that Adam inherited this mutation. Because Sarah is also of Eastern European Jewish ancestry, she could also be a carrier of the gene, even though no one in her family has been affected with TSD. If Adam and Sarah are both carriers, each of their children would have a 25% chance of being afflicted with TSD. A simple blood test performed on both Sarah and Adam could determine whether they are carriers of this mutation. Would you want to know the results of the cancer, heart disease, and TSD tests if you were Sarah and Adam? Is it their responsibility as potential parents to gather this type of information before they decide to have a child?arrow_forward
- Pedigree analysis is a fundamental tool for investigating whether or not a trait is following a Mendelian pattern of inheritance. It can also be used to help identify individuals within a family who may be at risk for the trait. Adam and Sarah, a young couple of Eastern European Jewish ancestry, went to a genetic counselor because they were planning a family and wanted to know what their chances were for having a child with a genetic condition. The genetic counselor took a detailed family history from both of them and discovered several traits in their respective families. Sarahs maternal family history is suggestive of an autosomal dominant pattern of cancer predisposition to breast and ovarian cancer because of the young ages at which her mother and grandmother were diagnosed with their cancers. If a mutant allele that predisposed to breast and ovarian cancer was inherited in Sarahs family, she, her sister, and any of her own future children could be at risk for inheriting this mutation. The counselor told her that genetic testing is available that may help determine if this mutant allele is present in her family members. Adams paternal family history has a very strong pattern of early onset heart disease. An autosomal dominant condition known as familial hypercholesterolemia may be responsible for the large number of deaths from heart disease. As with hereditary breast and ovarian cancer, genetic testing is available to see if Adam carries the mutant allele. Testing will give the couple more information about the chances that their children could inherit this mutation. Adam had a first cousin who died from Tay-Sachs disease (TSD), a fatal autosomal recessive condition most commonly found in people of Eastern European Jewish descent. Because TSD is a recessively inherited disorder, both of his cousins parents must have been heterozygous carriers of the mutant allele. If that is the case, Adams father could be a carrier as well. If Adams father carries the mutant TSD allele, it is possible that Adam inherited this mutation. Because Sarah is also of Eastern European Jewish ancestry, she could also be a carrier of the gene, even though no one in her family has been affected with TSD. If Adam and Sarah are both carriers, each of their children would have a 25% chance of being afflicted with TSD. A simple blood test performed on both Sarah and Adam could determine whether they are carriers of this mutation. Would you decide to have a child if the test results said that you carry the mutation for breast and ovarian cancer? The heart disease mutation? The TSD mutation? The heart disease and the mutant alleles?arrow_forwardA couple was referred for genetic counseling because they wanted to know the chances of having a child with dwarfism. Both the man and the woman had achondroplasia (MIM 100800), the most common form of short-limbed dwarfism. The couple knew that this condition is inherited as an autosomal dominant trait, but they were unsure what kind of physical manifestations a child would have if it inherited both mutant alleles. They were each heterozygous for the FGFR3 (MIM 134934) allele that causes achondroplasia. Normally, the protein encoded by this gene interacts with growth factors outside the cell and receives signals that control growth and development. In achrodroplasia, a mutation alters the activity of the receptor, resulting in a characteristic form of dwarfism. Because both the normal and mutant forms of the FGFR3 protein act before birth, no treatment for achrondroplasia is available. The parents each carry one normal allele and one mutant allele of FGRF3, and they wanted information on their chances of having a homozygous child. The counsellor briefly reviewed the phenotypic features of individuals with achondroplasia. These include facial features (large head with prominent forehead; small, flat nasal bridge; and prominent jaw), very short stature, and shortening of the arms and legs. Physical examination and skeletal X-ray films are used to diagnose this condition. Final adult height is approximately 4 feet. Because achondroplasia is an autosomal dominant condition, a heterozygote has a 1-in-2, or 50%, chance of passing this trait to his or her offspring. However, about 75% of those with achondroplasia have parents of average size who do not carry the mutant allele. In these cases, achondroplasia is due to a new mutation. In the couple being counseled, each individual is heterozygous, and they are at risk for having a homozygous child with two copies of the mutated gene. Infants with homozygous achondroplasia are either stillborn or die shortly after birth. The counselor recommended prenatal diagnosis via ultrasounds at various stages of development. In addition, a DNA test is available to detect the homozygous condition prenatally. What is the chance that this couple will have a child with two copies of the dominant mutant gene? What is the chance that the child will have normal height?arrow_forwardA couple was referred for genetic counseling because they wanted to know the chances of having a child with dwarfism. Both the man and the woman had achondroplasia (MIM 100800), the most common form of short-limbed dwarfism. The couple knew that this condition is inherited as an autosomal dominant trait, but they were unsure what kind of physical manifestations a child would have if it inherited both mutant alleles. They were each heterozygous for the FGFR3 (MIM 134934) allele that causes achondroplasia. Normally, the protein encoded by this gene interacts with growth factors outside the cell and receives signals that control growth and development. In achrodroplasia, a mutation alters the activity of the receptor, resulting in a characteristic form of dwarfism. Because both the normal and mutant forms of the FGFR3 protein act before birth, no treatment for achrondroplasia is available. The parents each carry one normal allele and one mutant allele of FGRF3, and they wanted information on their chances of having a homozygous child. The counsellor briefly reviewed the phenotypic features of individuals with achondroplasia. These include facial features (large head with prominent forehead; small, flat nasal bridge; and prominent jaw), very short stature, and shortening of the arms and legs. Physical examination and skeletal X-ray films are used to diagnose this condition. Final adult height is approximately 4 feet. Because achondroplasia is an autosomal dominant condition, a heterozygote has a 1-in-2, or 50%, chance of passing this trait to his or her offspring. However, about 75% of those with achondroplasia have parents of average size who do not carry the mutant allele. In these cases, achondroplasia is due to a new mutation. In the couple being counseled, each individual is heterozygous, and they are at risk for having a homozygous child with two copies of the mutated gene. Infants with homozygous achondroplasia are either stillborn or die shortly after birth. The counselor recommended prenatal diagnosis via ultrasounds at various stages of development. In addition, a DNA test is available to detect the homozygous condition prenatally. Should the parents be concerned about the heterozygous condition as well as the homozygous mutant condition?arrow_forward
- A couple was referred for genetic counseling because they wanted to know the chances of having a child with dwarfism. Both the man and the woman had achondroplasia (MIM 100800), the most common form of short-limbed dwarfism. The couple knew that this condition is inherited as an autosomal dominant trait, but they were unsure what kind of physical manifestations a child would have if it inherited both mutant alleles. They were each heterozygous for the FGFR3 (MIM 134934) allele that causes achondroplasia. Normally, the protein encoded by this gene interacts with growth factors outside the cell and receives signals that control growth and development. In achrodroplasia, a mutation alters the activity of the receptor, resulting in a characteristic form of dwarfism. Because both the normal and mutant forms of the FGFR3 protein act before birth, no treatment for achrondroplasia is available. The parents each carry one normal allele and one mutant allele of FGRF3, and they wanted information on their chances of having a homozygous child. The counsellor briefly reviewed the phenotypic features of individuals with achondroplasia. These include facial features (large head with prominent forehead; small, flat nasal bridge; and prominent jaw), very short stature, and shortening of the arms and legs. Physical examination and skeletal X-ray films are used to diagnose this condition. Final adult height is approximately 4 feet. Because achondroplasia is an autosomal dominant condition, a heterozygote has a 1-in-2, or 50%, chance of passing this trait to his or her offspring. However, about 75% of those with achondroplasia have parents of average size who do not carry the mutant allele. In these cases, achondroplasia is due to a new mutation. In the couple being counseled, each individual is heterozygous, and they are at risk for having a homozygous child with two copies of the mutated gene. Infants with homozygous achondroplasia are either stillborn or die shortly after birth. The counselor recommended prenatal diagnosis via ultrasounds at various stages of development. In addition, a DNA test is available to detect the homozygous condition prenatally. What if the couple wanted prenatal testing so that a normal fetus could be aborted?arrow_forwardPlease consider the following pedigree. Assume that people who marry in to the family do not carry the allele unless otherwise indicated. Assume complete penetrance. I II 5 6 III 6 IV 1 2 a. Is it possible for the inheritance pattern for the trait illustrated in this pedigree to be as a result of each of the following? Answer yes or no. (i) an autosomal recessive allele (AR) (ii) an autosomal dominant allele (AD) (iii) a X-linked recessive allele (XR) (iv) a X-linked dominant allele (XD) b. Provide a genotype for individual III-6 for the most likely mode of inheritance as determined in (a).arrow_forwardPlease consider the following pedigree. Assume that people who marry in to the family do not carry the allele. Assume complete penetrance. I II III 3 IV 1 2 a. Is it possible for the inheritance pattern for the trait illustrated in this pedigree to be as a result of each of the following? Answer yes or no. (i) an autosomal recessive allele (AR) (ii) an autosomal dominant allele (AD) (iii) a X-linked recessive allele (XR) (iv) a X-linked dominant allele (XD) b. Based strictly on the characteristic patterns of inheritance that define the four different options in (a), give a definitive motivation for the most likely mode of inhertance.arrow_forward
- Please answer the questions provided in the image.arrow_forwardAnswer the following questions given the pedigree below. Please assume that no other mutations are occurring, complete penetrance, and that the individual marked with an asterisk (*) doesn’t carry the allele causing the affected phenotype. Q4) Assuming II-2 and II-3 want to have another child. what are all the possible genotypes, and what is the percentage that their child will be affected?arrow_forwardWhat feature(s) of this pedigree indicate(s) dominant inheritance?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage Learning
Human Heredity: Principles and Issues (MindTap Co...
Biology
ISBN:9781305251052
Author:Michael Cummings
Publisher:Cengage Learning
How to solve genetics probability problems; Author: Shomu's Biology;https://www.youtube.com/watch?v=R0yjfb1ooUs;License: Standard YouTube License, CC-BY
Beyond Mendelian Genetics: Complex Patterns of Inheritance; Author: Professor Dave Explains;https://www.youtube.com/watch?v=-EmvmBuK-B8;License: Standard YouTube License, CC-BY