Concept explainers
To determine: The presence of mutants even when no
Introduction:
Drug
Explanation of Solution
Explanation:
Experiments were carried out in two strains of bacteria with wild type
These strains are then grown in culture media with observance of few colonies in mutant
Conclusion:
To explain: That treatment with drug
Introduction:
Genotoxic activity of drug is its chemical property that induces mutations in the genome.
Explanation of Solution
Explanation:
Treatment with drug
Conclusion:
The addition of this drug alkylates nucleotides leading to the formation of mutations in the genome.
To determine: The differences in the mutagenesis curve and survival curves in the two bacterial strains
Introduction:
Mutagenesis curve growth rate analyzes the rate of growth of bacterial strain after increasing the concentration of mutation causing drug in bacteria. Survival curve analyzes the percent of bacteria which survive after adding the mutation causing drug.
Explanation of Solution
Explanation:
The percent survival of
Conclusion:
There is more decrease in the survival rate of
To explain: The amount of drops in
Introduction:
Radioactive labeling with thymidine incorporates these labeled atoms inside the formation of adducts of drug-
Explanation of Solution
Explanation:
Conclusion:
The counts of incorporation of radioactive drug decreases in wild type strain and increases in mutant strain of
To determine: The types of mutations which show significant increases due to treatment with
Introduction:
Mutations are changes in nucleotides present at specific positions in the genome. These mutations convert purines to pyrimidines and pyrimidines to purines in the genome.
Explanation of Solution
Explanation:
The strains used in this experimental study include the following with the nomenclature provided as follows:
Conclusion:
There is occurrence of mutations in all strains of bacteria but the frequency is different depending upon the characteristics of strain and amount of drug added to the strain of bacteria.
To determine: The different mutations occurring due to the formation of
Introduction:
Mutations occur in the genome of bacteria due to conversion of nucleotides after the formation of adducts of
Explanation of Solution
Explanation:
The adduct formation takes place at guanine with formation of derivates with drug. This causes the change in base pairing from
Conclusion:
The adducts are formed by the addition of drug which changes the base pairing from
To determine: The base pairs that form
Introduction:
Explanation of Solution
Explanation:
Refer to Figure
Conclusion:
The base pairs that form
To determine: Whether all the mutation types are repaired with same fidelity.
Introduction:
Fidelity is the precision with which the nucleotides are repaired in the genome. It depends upon the enzyme complexes which take an active part in excising and replacing the error prone nucleotides in the genome.
Explanation of Solution
Explanation:
The different mutation types are not repaired with the same fidelity as given in the table below:
|
Higher repair, less number of colonies. |
|
Not much difference |
|
Less repair. |
|
High repair in both strains. |
|
High repair in both strains |
|
Low repair. |
Conclusion:
The formation of different base-pairs with transitions occurs in both the wild type and mutant strains with formation of
Want to see more full solutions like this?
Chapter 25 Solutions
Lehninger Principles of Biochemistry (Instructor's)
- Biochemistry Please help. Thank you What is the importance of glutamic acid in the metabolism of nitrogen from amino acids? (we know therole; it’s used to remove the nitrogen from amino acids so that the remaining carbon skeleton can bebroken down by the “usual” pathways, but what is the important, unique role that only glutamicacid/glutamate can do?)arrow_forwardBiochemistry Please help. Thank you When carbamyl phosphate is joined to L-ornathine, where does the energy for the reaction come from?arrow_forwardBiochemistry Question Please help. Thank you What is the function of glutamate dehydrogenase?arrow_forward
- Biochemistry Question Please help. Thank you How and why does a high protein diet affect the enzymes of the urea cycle?arrow_forwardBiochemistry What is the importance of the glucose-alanine cycle?arrow_forwardBiochemistry Assuming 2.5 molecules of ATP per oxidation of NADH/(H+) and 1.5molecules of ATP per oxidation of FADH2, how many ATP are produced per molecule of pyruvate? Please help. Thank youarrow_forward
- 1. How would you explain the term ‘good food’? 2. How would you define Nutrition? 3. Nutrients are generally categorised into two forms. Discuss.arrow_forwardBiochemistry Question. Please help solve. Thank you! Based upon knowledge of oxidation of bioorganic compounds and howmuch energy is released during their oxidation, rank the following, from most to least, with respect to how much energy would be produced from each during their oxidation. Explain your placement for each one.arrow_forwardBiochemistry Question.For the metabolism of amino acids what is the first step for theirbreakdown? Why is it necessary for this breakdown product to be transported to the liver? For the catabolism of the carbon backbone of these amino acids, there are 7 entry points into the “standard” metabolic pathways. List these 7 entry points and which amino acids are metabolized to these entry points. Please help. Thank you!arrow_forward
- Biochemistry Question. Please help. Thank you. You are studying pyruvate utilization in mammals for ATP production under aerobic conditions and have synthesized pyruvate with Carbon #1 labelled with radioactive C14. After only one complete cycle of the TCA cycle, which of the TCA cycle intermediates would be labeled with C14? Explain your answer. Interestingly, you find C14 being excreted in the urine. How does it get there?arrow_forwardBiochemistry question. Please help with. Thanks in advance For each of the enzymes listed below, explain what the enzyme does including function, names (or structures) of the substrate and products and the pathway(s) (if applicable) it is/are found in. (a) ATP synthetase (b) succinate dehydrogenase (c) isocitrate lyase (d) acetyl CoA carboxylase (e) isocitrate dehydrogenase (f) malate dehydrogenasearrow_forwardDraw and name each alcohol and classify it as primary, secondary, or tertiary. Explain your answer thoroughly.arrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON