Chemistry: Atoms First
Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 24.6, Problem 24.4WE

(a)

Interpretation Introduction

Interpretation:

The given set of combinations should be identified that whether they form good semiconductor.

Concept Introduction:

Semiconductors are substances that conduct electricity either by addition of an impurity or by the effects of temperature on it. Semiconductors have small energy gap between valence and conduction band hence its electrical conductivity lies between conductor and insulator.

Addition of impurity to a semiconductor is termed as doping. Doping alters the conductivity of a semiconductor. The addition of an element having either more or less number of valence electrons than the natural semiconductor decides the combination as the following two types of semiconductor.

  • n- type semiconductor:  (conduction is due to movement of extra electrons)

The element added will have more valence electron than the natural semiconductor. Therefore, the extra electron from the added element resides in conduction band and increase the conductivity.

Example: Silicon (natural semiconductor) and Phosphorus

  • p-type semiconductor: (conduction is due to movement of holes)

The element added will have less valence electron than the natural semiconductor. Here, instead of extra electron, there will be “holes” at the places, where a semiconductor is replaced by added element. A p-type semiconductor increases conductivity because the holes (effective positive charge; lies at valence band) move through the natural semiconductor rather than electrons.

Example: Silicon (natural semiconductor) and Gallium

To Determine: The given combination of elements will form semiconductor or not.

(b)

Interpretation Introduction

Interpretation:

The given set of combinations should be identified that whether they form good semiconductor.

Concept Introduction:

Semiconductors are substances that conduct electricity either by addition of an impurity or by the effects of temperature on it. Semiconductors have small energy gap between valence and conduction band hence its electrical conductivity lies between conductor and insulator.

Addition of impurity to a semiconductor is termed as doping. Doping alters the conductivity of a semiconductor. The addition of an element having either more or less number of valence electrons than the natural semiconductor decides the combination as the following two types of semiconductor.

  • n- type semiconductor:  (conduction is due to movement of extra electrons)

The element added will have more valence electron than the natural semiconductor. Therefore, the extra electron from the added element resides in conduction band and increase the conductivity.

Example: Silicon (natural semiconductor) and Phosphorus

  • p-type semiconductor: (conduction is due to movement of holes)

The element added will have less valence electron than the natural semiconductor. Here, instead of extra electron, there will be “holes” at the places, where a semiconductor is replaced by added element. A p-type semiconductor increases conductivity because the holes (effective positive charge; lies at valence band) move through the natural semiconductor rather than electrons.

Example: Silicon (natural semiconductor) and Gallium

To Determine: The given combination of elements will form semiconductor or not.

(c)

Interpretation Introduction

Interpretation:

The given set of combinations should be identified that whether they form good semiconductor.

Concept Introduction:

Semiconductors are substances that conduct electricity either by addition of an impurity or by the effects of temperature on it. Semiconductors have small energy gap between valence and conduction band hence its electrical conductivity lies between conductor and insulator.

Addition of impurity to a semiconductor is termed as doping. Doping alters the conductivity of a semiconductor. The addition of an element having either more or less number of valence electrons than the natural semiconductor decides the combination as the following two types of semiconductor.

  • n- type semiconductor:  (conduction is due to movement of extra electrons)

The element added will have more valence electron than the natural semiconductor. Therefore, the extra electron from the added element resides in conduction band and increase the conductivity.

Example: Silicon (natural semiconductor) and Phosphorus

  • p-type semiconductor: (conduction is due to movement of holes)

The element added will have less valence electron than the natural semiconductor. Here, instead of extra electron, there will be “holes” at the places, where a semiconductor is replaced by added element. A p-type semiconductor increases conductivity because the holes (effective positive charge; lies at valence band) move through the natural semiconductor rather than electrons.

Example: Silicon (natural semiconductor) and Gallium

To Determine: The given combination of elements will form semiconductor or not.

Blurred answer
Students have asked these similar questions
Name the molecules & Identify any chiral center CH3CH2CH2CHCH₂CH₂CH₂CH₂ OH CH₂CHCH2CH3 Br CH3 CH3CHCH2CHCH2CH3 CH3
Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).
Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).

Chapter 24 Solutions

Chemistry: Atoms First

Ch. 24.3 - Would the following molecule make a good liquid...Ch. 24.3 - Prob. 3PPACh. 24.3 - Prob. 3PPBCh. 24.3 - Prob. 3PPCCh. 24.3 - Prob. 24.3.1SRCh. 24.3 - Prob. 24.3.2SRCh. 24.6 - Prob. 24.4WECh. 24.6 - Prob. 4PPACh. 24.6 - Prob. 4PPBCh. 24.6 - Prob. 4PPCCh. 24.6 - Prob. 24.6.1SRCh. 24 - Bakelite, the first commercially produced polymer,...Ch. 24 - Prob. 24.2QPCh. 24 - Prob. 24.3QPCh. 24 - Prob. 24.4QPCh. 24 - Prob. 24.5QPCh. 24 - Prob. 24.6QPCh. 24 - Prob. 24.7QPCh. 24 - Describe two natural types of composite materials...Ch. 24 - Prob. 24.9QPCh. 24 - Amorphous silica (SiO2) can be formed in uniform...Ch. 24 - Prob. 24.11QPCh. 24 - Prob. 24.12QPCh. 24 - Prob. 24.13QPCh. 24 - Prob. 24.14QPCh. 24 - Prob. 24.15QPCh. 24 - Prob. 24.16QPCh. 24 - Prob. 24.17QPCh. 24 - Prob. 24.18QPCh. 24 - Prob. 24.19QPCh. 24 - Prob. 24.20QPCh. 24 - Prob. 24.21QPCh. 24 - How does an STM measure the peak and valley...Ch. 24 - Prob. 24.23QPCh. 24 - Prob. 24.24QPCh. 24 - Prob. 24.25QPCh. 24 - Prob. 24.26QPCh. 24 - Prob. 24.27QPCh. 24 - Prob. 24.28QPCh. 24 - Prob. 24.29QPCh. 24 - Prob. 24.30QPCh. 24 - Prob. 24.31QPCh. 24 - Prob. 24.32QPCh. 24 - Prob. 24.33QPCh. 24 - Prob. 24.34QPCh. 24 - Prob. 24.35QPCh. 24 - Prob. 24.36QPCh. 24 - Prob. 24.37QPCh. 24 - Draw representations of block copolymers and graft...Ch. 24 - Prob. 24.39QPCh. 24 - Prob. 24.40QPCh. 24 - Prob. 24.41QPCh. 24 - Prob. 24.42QPCh. 24 - Prob. 24.43QPCh. 24 - Prob. 24.44QPCh. 24 - Prob. 24.45QPCh. 24 - Prob. 24.46QPCh. 24 - Prob. 24.47QPCh. 24 - Prob. 24.48QP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry In Focus
Chemistry
ISBN:9781337399692
Author:Tro, Nivaldo J.
Publisher:Cengage Learning,
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning