Chemistry: Atoms First
Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 24, Problem 24.30QP

(a)

Interpretation Introduction

Interpretation:

Whether the given combination of elements would produce a semiconductor or not has to be explained

Concept Introduction:

Semiconductors are substances that conduct electricity either by addition of an impurity or by the effects of temperature on it.  Semiconductors electrically conductivity lie between conductor and insulator.  Semiconductors have small energy gap between valence band and conduction band.

The only elemental form of semiconductors is germanium, silicon and carbon (graphite form) whereas other semiconductors will have combination of elements whose valence electron count will total up to eight.

(b)

Interpretation Introduction

Interpretation:

Whether the given combination of elements would produce a semiconductor or not has to be explained

Concept Introduction:

Semiconductors are substances that conduct electricity either by addition of an impurity or by the effects of temperature on it.  Semiconductors electrically conductivity lie between conductor and insulator.  Semiconductors have small energy gap between valence band and conduction band.

The only elemental form of semiconductors is germanium, silicon and carbon (graphite form) whereas other semiconductors will have combination of elements whose valence electron count will total up to eight.

(c)

Interpretation Introduction

Interpretation:

Whether the given combination of elements would produce a semiconductor or not has to be explained

Concept Introduction:

Semiconductors are substances that conduct electricity either by addition of an impurity or by the effects of temperature on it.  Semiconductors electrically conductivity lie between conductor and insulator.  Semiconductors have small energy gap between valence band and conduction band.

The only elemental form of semiconductors is germanium, silicon and carbon (graphite form) whereas other semiconductors will have combination of elements whose valence electron count will total up to eight.

(d)

Interpretation Introduction

Interpretation:

Whether the given combination of elements would produce a semiconductor or not has to be explained

Concept Introduction:

Semiconductors are substances that conduct electricity either by addition of an impurity or by the effects of temperature on it.  Semiconductors electrically conductivity lie between conductor and insulator.  Semiconductors have small energy gap between valence band and conduction band.

The only elemental form of semiconductors is germanium, silicon and carbon (graphite form) whereas other semiconductors will have combination of elements whose valence electron count will total up to eight.

(e)

Interpretation Introduction

Interpretation:

Whether the given combination of elements would produce a semiconductor or not has to be explained

Concept Introduction:

Semiconductors are substances that conduct electricity either by addition of an impurity or by the effects of temperature on it.  Semiconductors electrically conductivity lie between conductor and insulator.  Semiconductors have small energy gap between valence band and conduction band.

The only elemental form of semiconductors is germanium, silicon and carbon (graphite form) whereas other semiconductors will have combination of elements whose valence electron count will total up to eight.

Blurred answer
Students have asked these similar questions
Is gallium-doped germanium a p-type or n-type semiconductor?
a) Explain the band structure of an electrical conductor (metal), a semiconductor, and an insulator at 0 K by showing the valence and conduction bands and fermi energy levels. Explain how the electrical conduction takes place in these three types of materials. Give an example for each type of material. b)Explain what n and p-type semiconductors are using their band structures. Why?
Identify 2 elements that would lead to an n-type semiconductor when added in trace amounts to silicon. Explain your response.

Chapter 24 Solutions

Chemistry: Atoms First

Ch. 24.3 - Would the following molecule make a good liquid...Ch. 24.3 - Prob. 3PPACh. 24.3 - Prob. 3PPBCh. 24.3 - Prob. 3PPCCh. 24.3 - Prob. 24.3.1SRCh. 24.3 - Prob. 24.3.2SRCh. 24.6 - Prob. 24.4WECh. 24.6 - Prob. 4PPACh. 24.6 - Prob. 4PPBCh. 24.6 - Prob. 4PPCCh. 24.6 - Prob. 24.6.1SRCh. 24 - Bakelite, the first commercially produced polymer,...Ch. 24 - Prob. 24.2QPCh. 24 - Prob. 24.3QPCh. 24 - Prob. 24.4QPCh. 24 - Prob. 24.5QPCh. 24 - Prob. 24.6QPCh. 24 - Prob. 24.7QPCh. 24 - Describe two natural types of composite materials...Ch. 24 - Prob. 24.9QPCh. 24 - Amorphous silica (SiO2) can be formed in uniform...Ch. 24 - Prob. 24.11QPCh. 24 - Prob. 24.12QPCh. 24 - Prob. 24.13QPCh. 24 - Prob. 24.14QPCh. 24 - Prob. 24.15QPCh. 24 - Prob. 24.16QPCh. 24 - Prob. 24.17QPCh. 24 - Prob. 24.18QPCh. 24 - Prob. 24.19QPCh. 24 - Prob. 24.20QPCh. 24 - Prob. 24.21QPCh. 24 - How does an STM measure the peak and valley...Ch. 24 - Prob. 24.23QPCh. 24 - Prob. 24.24QPCh. 24 - Prob. 24.25QPCh. 24 - Prob. 24.26QPCh. 24 - Prob. 24.27QPCh. 24 - Prob. 24.28QPCh. 24 - Prob. 24.29QPCh. 24 - Prob. 24.30QPCh. 24 - Prob. 24.31QPCh. 24 - Prob. 24.32QPCh. 24 - Prob. 24.33QPCh. 24 - Prob. 24.34QPCh. 24 - Prob. 24.35QPCh. 24 - Prob. 24.36QPCh. 24 - Prob. 24.37QPCh. 24 - Draw representations of block copolymers and graft...Ch. 24 - Prob. 24.39QPCh. 24 - Prob. 24.40QPCh. 24 - Prob. 24.41QPCh. 24 - Prob. 24.42QPCh. 24 - Prob. 24.43QPCh. 24 - Prob. 24.44QPCh. 24 - Prob. 24.45QPCh. 24 - Prob. 24.46QPCh. 24 - Prob. 24.47QPCh. 24 - Prob. 24.48QP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry In Focus
Chemistry
ISBN:9781337399692
Author:Tro, Nivaldo J.
Publisher:Cengage Learning,