College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 69AP
Figure P24.69 shows a radio-wave transmitter and a receiver, both h = 50.0 m above the ground and d = 6.00 × 102 m apart. The receiver can receive signals directly from the transmitter and indirectly from signals that bounce off the ground. If the ground is level between the transmitter and receiver and a λ/2 phase shift occurs upon reflection, determine the longest wavelengths that interior (a) constructively and (b) destructively.
Figure P24.69
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Figure P24.69 shows
d-
radio-wave transmitter and
a receiver, both h = 50.0 m
above the ground and d =
6.00 X 102 m apart. The
receiver can receive signals
directly from the transmit-
ter and indirectly from
signals that bounce off the
ground. If the ground is
level between the transmitter and receiver and a /2 phase
shift occurs upon reflection, determine the longest wave-
lengths that interfere (a) constructively and (b) destructively.
Transmitter
Receiver
Figure P24.69
36. Figure P36.35 shows a radio-wave transmitter and a receiver
separated by a distance d and both a distance h above the
ground. The receiver can receive signals both directly from
the transmitter and indirectly from signals that reflect
from the ground. Assume the ground is level between the
transmitter and receiver and a 180* phase shift occurs upon
reflection. Determine the longest wavelengths that interfere
(a) constructively and (b) destructively.
Two antennas located at points A and B are broadcasting radio waves of frequency 96.0 MHz, perfectly in phase with each other. The two antennas are separated by a distance d= 6.20
m. An observer, P, is located on the x axis, a distance x= 84.0 m from antenna A, so that APB forms a right triangle with PB as hypotenuse. What is the phase difference between the
waves arriving at P from antennas A and B?
A
P
X
B
4.594x10-¹ rad
Computer's answer now shown above. You are correct.
Your receipt no. is 158-6031 >
Previous Tries
Now observer P walks along the x axis toward antenna A. What is P's distance from A when he first observes fully destructive interference between the two waves?
1.203 m
As P gets closer A, the path length difference gets larger. What's the smallest path length difference that gives destructive interference?
Submit Answer Tries 0/6
Submit Answer Incorrect. Tries 1/6 Previous Tries
If observer P continues walking until he reaches antenna A, at how many places along the x…
Chapter 24 Solutions
College Physics
Ch. 24.2 - In a two-slit interference pattern projected on a...Ch. 24.2 - if the distance between the slits is doubled in...Ch. 24.2 - A Youngs double-slit experiment is performed with...Ch. 24.4 - Suppose Youngs experiment is carried out in air,...Ch. 24.7 - In a single-alit diffraction experiment, as the...Ch. 24.8 - If laser light is reflected from a phonograph...Ch. 24 - Your automobile has two headlights. What sort of...Ch. 24 - A plane monochromatic light wave is incident on a...Ch. 24 - A plane monochromatic light wave is incident on a...Ch. 24 - If a Youngs experiment carried out in air is...
Ch. 24 - Sodiums emission lines at 589.0 nm and 589.6 nm...Ch. 24 - Count the number of 180 phase reversals for the...Ch. 24 - Figure CQ24.7 shows rays with wavelength incident...Ch. 24 - Fingerprints left on a piece of glass such as a...Ch. 24 - In everyday experience, why are radio waves...Ch. 24 - Suppose reflected while light is used to observe a...Ch. 24 - Would it be possible to place a nonreflective...Ch. 24 - Certain sunglasses use a polarizing material to...Ch. 24 - Why is it so much easier to perform interference...Ch. 24 - A soap film is held vertically in air and is...Ch. 24 - Consider a dark fringe in an interference pattern...Ch. 24 - Holding your hand at arms length, you can readily...Ch. 24 - A laser beam is incident on two slits with a...Ch. 24 - In a Youngs double-slit experiment, a set of...Ch. 24 - Light at 633 nm from a helium-neon laser shines on...Ch. 24 - Light of wavelength 620. nm falls on a double...Ch. 24 - In a location where the speed of sound is 354 m/s....Ch. 24 - A double slit separated by 0.058 0 mm is placed...Ch. 24 - Two radio antennas separated by d = 3.00 102 cm....Ch. 24 - Prob. 8PCh. 24 - Monochromatic light falls on a screen 1.75 m from...Ch. 24 - A pair of parallel slits separated by 2.00 104 m...Ch. 24 - A riverside warehouse has two open doors, as in...Ch. 24 - A student sets up a double-slit experiment using...Ch. 24 - Radio waves from a star, of wavelength 2.50 102...Ch. 24 - Monochromatic light of wavelength is incident on...Ch. 24 - Waves from a radio station have a wavelength of...Ch. 24 - A soap bubble (n = 1.33) having a wall thickness...Ch. 24 - A thin layer of liquid methylene iodide (n =...Ch. 24 - A thin film of oil (n = 1.25) is located on...Ch. 24 - A thin film of glass (n = 1.52) of thickness 0.420...Ch. 24 - A transparent oil with index of refraction 1.29...Ch. 24 - A possible means for making an airplane invisible...Ch. 24 - An oil film (n = 1.45) floating on water is...Ch. 24 - Astronomers observe the chromosphere of the Sun...Ch. 24 - A spacer is cut from a playing card of thickness...Ch. 24 - An investigator finds at a fiber at a crime scene...Ch. 24 - A plano-convex lens with radius of curvature R =...Ch. 24 - A thin film of oil (n = 1.45) of thickness 425 nm...Ch. 24 - Prob. 28PCh. 24 - A thin film of glycerin (n = 1.173) of thickness...Ch. 24 - Prob. 30PCh. 24 - Light of wavelength 5.40 102 nm passes through a...Ch. 24 - A student and his lab partner create a single slit...Ch. 24 - Light of wavelength 587.5 nm illuminates a slit of...Ch. 24 - Microwaves of wavelength 5.00 cm enter a long,...Ch. 24 - A beam of monochromatic light is diffracted by a...Ch. 24 - A screen is placed 50.0 cm from a single slit that...Ch. 24 - A slit of width 0.50 mm is illuminated with light...Ch. 24 - The second-order dark fringe in a single-slit...Ch. 24 - Three discrete spectral lines occur at angles of...Ch. 24 - Intense white light is incident on a diffraction...Ch. 24 - The hydrogen spectrum has a red line at 656 nm and...Ch. 24 - Prob. 42PCh. 24 - A helium-neon laser ( = 632.8 nm) is used to...Ch. 24 - Prob. 44PCh. 24 - Prob. 45PCh. 24 - White light is incident on a diffraction grating...Ch. 24 - Sunlight is incident on a diffraction grating that...Ch. 24 - Monochromatic light at 577 nm illuminates a...Ch. 24 - Light of wavelength 5.00 102 nm is incident...Ch. 24 - Prob. 50PCh. 24 - The angle of incidence of a light beam in air onto...Ch. 24 - Unpolarized light passes through two Polaroid...Ch. 24 - The index of retraction of a glass plate is 1.52....Ch. 24 - At what angle above the horizon is the Sun if...Ch. 24 - Prob. 55PCh. 24 - The critical angle for total internal reflection...Ch. 24 - Equation 24.14 assumes the incident light is in...Ch. 24 - Prob. 58PCh. 24 - Three polarizing plates whose planes are parallel...Ch. 24 - Light of intensity I0 is polarized vertically and...Ch. 24 - Light with a wavelength in vacuum of 546.1 nm...Ch. 24 - Light from a helium-neon laser ( = 632.8 nm) is...Ch. 24 - Laser light with a wavelength of 632.6 nm is...Ch. 24 - In a Youngs interference experiment, the two slits...Ch. 24 - Light of wavelength 546 nm (the intense green line...Ch. 24 - The two speakers are placed 35.0 cm apart. A...Ch. 24 - Interference effects are produced at point P on a...Ch. 24 - Prob. 68APCh. 24 - Figure P24.69 shows a radio-wave transmitter and a...Ch. 24 - Three polarizers, centered on a common axis and...Ch. 24 - Prob. 71APCh. 24 - A plano-convex lens (flat on one side, convex on...Ch. 24 - A diffraction pattern is produced on a screen 1.40...Ch. 24 - Prob. 74AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P36.35 shows a radio-wave transmitter and a receiver separated by a distance d = 50.0 m and both a distance h = 35.0 m above the ground. The receiver can receive signals both directly from the transmitter and indirectly from signals that reflect from the ground. Assume the ground is level between the transmitter and receiver and a 180 phase shift occurs upon reflection. Determine the longest wavelengths that interfere (a) constructively and (b) destructively. Figure P36.35 Problems 35 and 36.arrow_forward2. = A planar dielectric waveguide with the core refractive index n₁ 1.56 and the 1.47 is used to transmit light of wavelength o 750 nm. Suppose cladding index n₂ = = the width of the waveguide is d = 1.0 μm: (a) Determine the critical angle 0c at the interface. (b) Calculate and plot the phase change on reflection o, as a function of angle of incidence in the range 0c < 02, for the case of a TE wave. = 1, (c) Calculate the value of the angle of incidence Om corresponding to mode m = and the corresponding phase change $1. (d) Determine the skin depth for the evanescent wave in medium n2, for this mode.arrow_forwardIn a physics lab, light with wavelength 490 nm travels in air from a laser to a photocell in 17.0 ns. When a slab of glass 0.840 m thick is placed in the light beam, with the beam incident along the normal to the parallel faces of the slab, it takes the light 21.2 ns to travel from the laser to the photocell. What is the wavelength of the light in the glass?arrow_forward
- = 35. Figure P36.35 shows a radio-wave transmitter and a receiver separated by a distance d 50.0 m and both a distance h = 35.0 m above the ground. The receiver can receive sig- nals both directly from the transmitter and indirectly from signals that reflect from the ground. Assume the ground is level between the transmitter and receiver and a 180° phase shift occurs upon reflection. Determine the longest wave- lengths that interfere (a) constructively and (b) destructively. h Transmitter d Receiver Figure P36.35 Problems 35 and 36.arrow_forwardTwo antennas located at points A and B are broadcasting radio waves of frequency 104.0 MHz. The signals start in phase with each other. The two antennas are separated by a distance d = 8.7 m. An observer is located at point P on the x axis, a distance x = 110.0 m from antenna A. The points A, P, and B form a right triangle. What is the phase difference between the waves arriving at P from antennas A and B? Enter your answer in radiansarrow_forwardAn engineer, investigating the behavior of radio waves, builds a box 7.20 m long. Inside the box at one end is a small radio transmitter that emits radiation with a wavelength of 0.120 m. A receiver is placed at the other end, 7.20 m away. Assume both the transmitter and the receiver are on the floor of the box. The walls and floor of the box interior are treated to minimize reflection of radio waves. The ceiling of the box interior, however, is metal, so the radio waves can reflect off of it almost perfectly. The radio waves can take two paths from the transmitter to the receiver: a straight-line path, and a path that reflects off the ceiling of the box interior. Note that there is a phase shift when the waves reflect off the ceiling. (a) What is the minimum (nonzero) height of the box ceiling (in m) that could produce destructive interference between the direct and reflected waves at the receiver's location? (b) What If? Some modern Wi-Fi antennas emit frequencies in the 5 GHz band.…arrow_forward
- 35. Figure P36.35 shows a radio-wave transmitter and a receiver separated by a distance d - 50.0 m and both a distance A - 35.0 m above the ground. The receiver can receive sig- nals both directly from the transmitter and indirectly from signals that reflect from the ground. Assume the ground is level between the transmitter and receiver and a 180° phase shift occurs upon reflection. Determine the longest wave- lengths that interfere (a) constructively and (b) destructively. Transmitter Recriver Figure P36.35 Problems 35 and 36.arrow_forwardDiffraction occurs for all types of waves, including sound waves. High-frequency sound from a distant source with wavelength 9.00 cm passes through a slit 12.0 cm wide. A microphone is placed 8.00 m directly in front of the center of the slit, corresponding to point O in Fig. The microphone is then moved in a direction perpendicular to the line from the center of the slit to point O. At what distances from O will the intensity detected by the microphone be zero?arrow_forwardTwo antennas located at points A and B are broadcasting radio waves of frequency 104.0 MHz. The signals start in phase with each other. The two antennas are separated by a distance d = 8.7 m. An observer is located at point P on the x axis, a distance x = 110.0 m from antenna A. The points A, P, and B form a right triangle. Now observer P walks along the x axis toward antenna A. What is P's distance from A when they first observe fully constructive interference between the two waves?arrow_forward
- A quarter-wave plate is made from a material whose indices of refraction for light of free-space wavelength Ao = 589 nm are n = 1.732 and n = 1.456. What is the minimum necessary thickness of the plate for this wavelength?arrow_forwardA thin layer of oil with index of refraction no = 1.47 is floating above the water. The index of refraction of water is nw = 1.3. The index of refraction of air is na = 1. A light with wavelength λ = 325 nm goes in from the air to oil and water. Part (a) Express the wavelength of the light in the oil, λo, in terms of λ and no. Part (b) Express the minimum thickness of the film that will result in destructive interference, tmin, in terms of λo. Part (c) Express tmin in terms of λ and no. Part (d) Solve for the numerical value of tmin in nm.arrow_forwardSources A and B emit long-range radio waves of wavelength 380 m, with the phase of the emission from A ahead of that from source B by 90°. The distance rA from A to a detector is greater than the corresponding distance rB from B by 140 m. What is the magnitude of the phase difference at the detector?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY