College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 24, Problem 55P
(a)
To determine
The value of Brewster’s angle.
(b)
To determine
The angle of refraction for the transmitted ray.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A light beam is incident on a piece of fused quartz (n=1.458) at the Brewster’s angle. Find (a) the value of Brewster’s angle and (b) the angle of refraction for the transmitted ray.
A ray of light is incident on an air/water interface. The ray makes an angle of theta= 33 degrees with respect to the normal of the surface. The index of the air is n1 = 1 while water is n2 = 1.33.
Numerically, what is the angle in degree?
The angle of incidence of a light beam in air onto a reflecting surface is continuously variable. The reflected ray is found to be completely polarized when the angle of incidence is 63.0°.
(a) What is the index of refraction of the reflecting material? (b) If some of the incident light (at an angle of 63.0°) passes into the material below the surface, what is the angle of refraction? answer in degrees °
Chapter 24 Solutions
College Physics
Ch. 24.2 - In a two-slit interference pattern projected on a...Ch. 24.2 - if the distance between the slits is doubled in...Ch. 24.2 - A Youngs double-slit experiment is performed with...Ch. 24.4 - Suppose Youngs experiment is carried out in air,...Ch. 24.7 - In a single-alit diffraction experiment, as the...Ch. 24.8 - If laser light is reflected from a phonograph...Ch. 24 - Your automobile has two headlights. What sort of...Ch. 24 - A plane monochromatic light wave is incident on a...Ch. 24 - A plane monochromatic light wave is incident on a...Ch. 24 - If a Youngs experiment carried out in air is...
Ch. 24 - Sodiums emission lines at 589.0 nm and 589.6 nm...Ch. 24 - Count the number of 180 phase reversals for the...Ch. 24 - Figure CQ24.7 shows rays with wavelength incident...Ch. 24 - Fingerprints left on a piece of glass such as a...Ch. 24 - In everyday experience, why are radio waves...Ch. 24 - Suppose reflected while light is used to observe a...Ch. 24 - Would it be possible to place a nonreflective...Ch. 24 - Certain sunglasses use a polarizing material to...Ch. 24 - Why is it so much easier to perform interference...Ch. 24 - A soap film is held vertically in air and is...Ch. 24 - Consider a dark fringe in an interference pattern...Ch. 24 - Holding your hand at arms length, you can readily...Ch. 24 - A laser beam is incident on two slits with a...Ch. 24 - In a Youngs double-slit experiment, a set of...Ch. 24 - Light at 633 nm from a helium-neon laser shines on...Ch. 24 - Light of wavelength 620. nm falls on a double...Ch. 24 - In a location where the speed of sound is 354 m/s....Ch. 24 - A double slit separated by 0.058 0 mm is placed...Ch. 24 - Two radio antennas separated by d = 3.00 102 cm....Ch. 24 - Prob. 8PCh. 24 - Monochromatic light falls on a screen 1.75 m from...Ch. 24 - A pair of parallel slits separated by 2.00 104 m...Ch. 24 - A riverside warehouse has two open doors, as in...Ch. 24 - A student sets up a double-slit experiment using...Ch. 24 - Radio waves from a star, of wavelength 2.50 102...Ch. 24 - Monochromatic light of wavelength is incident on...Ch. 24 - Waves from a radio station have a wavelength of...Ch. 24 - A soap bubble (n = 1.33) having a wall thickness...Ch. 24 - A thin layer of liquid methylene iodide (n =...Ch. 24 - A thin film of oil (n = 1.25) is located on...Ch. 24 - A thin film of glass (n = 1.52) of thickness 0.420...Ch. 24 - A transparent oil with index of refraction 1.29...Ch. 24 - A possible means for making an airplane invisible...Ch. 24 - An oil film (n = 1.45) floating on water is...Ch. 24 - Astronomers observe the chromosphere of the Sun...Ch. 24 - A spacer is cut from a playing card of thickness...Ch. 24 - An investigator finds at a fiber at a crime scene...Ch. 24 - A plano-convex lens with radius of curvature R =...Ch. 24 - A thin film of oil (n = 1.45) of thickness 425 nm...Ch. 24 - Prob. 28PCh. 24 - A thin film of glycerin (n = 1.173) of thickness...Ch. 24 - Prob. 30PCh. 24 - Light of wavelength 5.40 102 nm passes through a...Ch. 24 - A student and his lab partner create a single slit...Ch. 24 - Light of wavelength 587.5 nm illuminates a slit of...Ch. 24 - Microwaves of wavelength 5.00 cm enter a long,...Ch. 24 - A beam of monochromatic light is diffracted by a...Ch. 24 - A screen is placed 50.0 cm from a single slit that...Ch. 24 - A slit of width 0.50 mm is illuminated with light...Ch. 24 - The second-order dark fringe in a single-slit...Ch. 24 - Three discrete spectral lines occur at angles of...Ch. 24 - Intense white light is incident on a diffraction...Ch. 24 - The hydrogen spectrum has a red line at 656 nm and...Ch. 24 - Prob. 42PCh. 24 - A helium-neon laser ( = 632.8 nm) is used to...Ch. 24 - Prob. 44PCh. 24 - Prob. 45PCh. 24 - White light is incident on a diffraction grating...Ch. 24 - Sunlight is incident on a diffraction grating that...Ch. 24 - Monochromatic light at 577 nm illuminates a...Ch. 24 - Light of wavelength 5.00 102 nm is incident...Ch. 24 - Prob. 50PCh. 24 - The angle of incidence of a light beam in air onto...Ch. 24 - Unpolarized light passes through two Polaroid...Ch. 24 - The index of retraction of a glass plate is 1.52....Ch. 24 - At what angle above the horizon is the Sun if...Ch. 24 - Prob. 55PCh. 24 - The critical angle for total internal reflection...Ch. 24 - Equation 24.14 assumes the incident light is in...Ch. 24 - Prob. 58PCh. 24 - Three polarizing plates whose planes are parallel...Ch. 24 - Light of intensity I0 is polarized vertically and...Ch. 24 - Light with a wavelength in vacuum of 546.1 nm...Ch. 24 - Light from a helium-neon laser ( = 632.8 nm) is...Ch. 24 - Laser light with a wavelength of 632.6 nm is...Ch. 24 - In a Youngs interference experiment, the two slits...Ch. 24 - Light of wavelength 546 nm (the intense green line...Ch. 24 - The two speakers are placed 35.0 cm apart. A...Ch. 24 - Interference effects are produced at point P on a...Ch. 24 - Prob. 68APCh. 24 - Figure P24.69 shows a radio-wave transmitter and a...Ch. 24 - Three polarizers, centered on a common axis and...Ch. 24 - Prob. 71APCh. 24 - A plano-convex lens (flat on one side, convex on...Ch. 24 - A diffraction pattern is produced on a screen 1.40...Ch. 24 - Prob. 74AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the figure, light initially in material 1 refracts into material 2, crosses that material, and is then incident at the critical angle on the interface between materials 2 and 3. The indices of refraction are n1 = 1.54, n2 = 1.36, n3 = 1.16. (a) What is angle θ? (b) If θ is increased, is there refraction of light into material 3?arrow_forwardA ray of light crosses the boundary between some substance with n = 1.61 and air, going from the substance into air. If the angle of incidence is 18◦ what is the angle of refraction? Calculate to 1decimal.arrow_forwardA parallel sided plate of glass with an index of refraction of 1.60 is in contact with the surface of water (n=1.33) in a tank. A ray coming from above makes an angle of incidence of 30.0° with the normal to the top surface of the glass plate. (a) What is the speed of light in the glass plate? (b) What is the critical angle between the glass and the water? (c) What angle does this ray make with the normal in the water? (d) Include a diagram of the situation. [Diagram 3 pts.]arrow_forward
- Light, when incident on a given surface, presents a reflected and a refracted component. When the reflected beam is perpendicular to the refracted beam, the angle of incidence θᵢ is called Brewster's angle. If a beam of light is initially in air with index of refraction n₁ = 1 and is incident on a glass surface (index of refraction n₂ = 1.5), Brewster's angle is: a)82.9° b)36.3° c)75.4° d)62.9° e)56.3° f)45.7°arrow_forwardA ray of light enters parallel to the axis of a hollow cylindrical tube. When the tube has only air, the light takes 18.6 ns to travel the full length of the cylinder, but when the tube is filled with a transparent substance, it takes 7.1 ns longer to travel by comparison. What is the refractive incidence of that substance?arrow_forwardA ray of light strikes the midpoint of one face of an equiangular (60°–60°–60°) glass prism (n = 1.5) at an angle of incidence of 40.8°. (a) Trace the path of the light ray through the glass, and find the angles of incidence and refraction at each surface.First surface: θincidence = ° θrefraction = ° Second surface: θincidence = ° θrefraction = ° (b) If a small fraction of light is also reflected at each surface, find the angles of reflection at the surfaces. θreflection = ° (first surface) θreflection = ° (second surface)arrow_forward
- A ray of light strikes the midpoint of one face of an equiangular (60°-60°-60°) glass prism (n = 1.5) at an angle of incidence of 36.0°. %3D (a) Trace the path of the light ray through the glass, and find the angles of incidence and refraction at each surface. First surface: incidence Orefraction %3D Second surface: incidence %3D refraction (b) If a small fraction of light is also reflected at each surface, find the angles of reflection at the surfaces. Oreflection ° (first surface) %3D reflection (second surface)arrow_forwardIn Figure (a), a beam of light in material 1 is incident on a boundary at an angle of 28°. The extent to which the light is bent due to refraction depends, in part, on the index of refraction n2 of material 2. Figure (b) gives the angle of refraction 02 versus n2 for a range of possible n2 values, from na = 1.40 to np = 1.97. What is the speed of light in material 1? 38 28 28° 18° (a) (b) Number Units the tolerance is +/-5%arrow_forwardA ray of light travels from air into another medium, making an angle of θ1 = 45.0° with the normal A light ray in air is moving down and to the right and is incident on a second medium. It makes an angle θ1 with the vertical. Inside the vertical, it continues to move down and to the right but at a steeper slope than the incident ray. It makes an angle θ2 with the vertical. (a) Find the angle of refraction θ2 if the second medium is sodium chloride. °(b) Find the angle of refraction θ2 if the second medium is diamond. °(c) Find the angle of refraction θ2 if the second medium is benzene. °arrow_forward
- Problem 2: A beam of light traveling through a liquid (of index of refraction n1 = 1.31) is incident on a surface at an angle of θ1 = 55° with respect to the normal to the surface. It passes into the second medium and refracts at an angle of θ2 = 66.5° with respect to the normal. Part (a) Write an equation for the index of refraction of the second material. Part (b) What is the index of refraction of the second material? Part (c) Numerically, what is the light's velocity in medium 1, in meters per second? Part (d) Numerically, what is the light's velocity in medium 2, in meters per second?arrow_forwardA ray of light strikes the midpoint of one face of an equiangular (60°–60°–60°) glass prism (n = 1.5) at an angle of incidence of 34.0°. (a) Trace the path of the light ray through the glass, and find the angles of incidence and refraction at each surface.First surface: ?incidence = ?refraction = Second surface: ?incidence = ?refraction = (b) If a small fraction of light is also reflected at each surface, find the angles of reflection at the surfaces. (first surface) ?reflection (second surface) ?reflectionarrow_forwardConsider an incident ray striking the surface of a material at an angle Ѳ1 = 65° with respect to the normal. The ray undergoes refraction. What is the angle Ѳ2 ? Given that n1 = 1.1 and n2 = 1.47.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning