College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 24, Problem 50P
To determine
The wavelengths in the light.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Light containing two different wavelengths passes through a diffraction grating with 1.20 x 103 slits/cm. On a screen 15.0 cm from the grating, the third - order maximum of the shorter wavelength falls midway between the central maximum and the first side maximum for the longer wavelength. If the neighboring maxima of the longer wavelength are 8.44 mm apart on the screen, what are the wavelengths in the light? Hint: Use the small - angle approximation.
In a single-slit diffraction experiment, there is a minimum of intensity for orange light (l= 600 nm) and a minimum of intensity for blue-green light (l = 500 nm) at the same angle of 1.00 mrad. For what minimum slit width is this possible?
You measure distances from the center of a diffraction pattern (y) to a series of dark fringes on a screen that is 0.3000 ± 0.0005 m
away from the 0.04-mm wide slit you are using to create the pattern. You create a plot of y (in m) vs m and get a slope for the best-
fit line of 0.005245 ± 8.575 x 10-6. What is the wavelength of the laser you used to collect the data?
) m
+1
Chapter 24 Solutions
College Physics
Ch. 24.2 - In a two-slit interference pattern projected on a...Ch. 24.2 - if the distance between the slits is doubled in...Ch. 24.2 - A Youngs double-slit experiment is performed with...Ch. 24.4 - Suppose Youngs experiment is carried out in air,...Ch. 24.7 - In a single-alit diffraction experiment, as the...Ch. 24.8 - If laser light is reflected from a phonograph...Ch. 24 - Your automobile has two headlights. What sort of...Ch. 24 - A plane monochromatic light wave is incident on a...Ch. 24 - A plane monochromatic light wave is incident on a...Ch. 24 - If a Youngs experiment carried out in air is...
Ch. 24 - Sodiums emission lines at 589.0 nm and 589.6 nm...Ch. 24 - Count the number of 180 phase reversals for the...Ch. 24 - Figure CQ24.7 shows rays with wavelength incident...Ch. 24 - Fingerprints left on a piece of glass such as a...Ch. 24 - In everyday experience, why are radio waves...Ch. 24 - Suppose reflected while light is used to observe a...Ch. 24 - Would it be possible to place a nonreflective...Ch. 24 - Certain sunglasses use a polarizing material to...Ch. 24 - Why is it so much easier to perform interference...Ch. 24 - A soap film is held vertically in air and is...Ch. 24 - Consider a dark fringe in an interference pattern...Ch. 24 - Holding your hand at arms length, you can readily...Ch. 24 - A laser beam is incident on two slits with a...Ch. 24 - In a Youngs double-slit experiment, a set of...Ch. 24 - Light at 633 nm from a helium-neon laser shines on...Ch. 24 - Light of wavelength 620. nm falls on a double...Ch. 24 - In a location where the speed of sound is 354 m/s....Ch. 24 - A double slit separated by 0.058 0 mm is placed...Ch. 24 - Two radio antennas separated by d = 3.00 102 cm....Ch. 24 - Prob. 8PCh. 24 - Monochromatic light falls on a screen 1.75 m from...Ch. 24 - A pair of parallel slits separated by 2.00 104 m...Ch. 24 - A riverside warehouse has two open doors, as in...Ch. 24 - A student sets up a double-slit experiment using...Ch. 24 - Radio waves from a star, of wavelength 2.50 102...Ch. 24 - Monochromatic light of wavelength is incident on...Ch. 24 - Waves from a radio station have a wavelength of...Ch. 24 - A soap bubble (n = 1.33) having a wall thickness...Ch. 24 - A thin layer of liquid methylene iodide (n =...Ch. 24 - A thin film of oil (n = 1.25) is located on...Ch. 24 - A thin film of glass (n = 1.52) of thickness 0.420...Ch. 24 - A transparent oil with index of refraction 1.29...Ch. 24 - A possible means for making an airplane invisible...Ch. 24 - An oil film (n = 1.45) floating on water is...Ch. 24 - Astronomers observe the chromosphere of the Sun...Ch. 24 - A spacer is cut from a playing card of thickness...Ch. 24 - An investigator finds at a fiber at a crime scene...Ch. 24 - A plano-convex lens with radius of curvature R =...Ch. 24 - A thin film of oil (n = 1.45) of thickness 425 nm...Ch. 24 - Prob. 28PCh. 24 - A thin film of glycerin (n = 1.173) of thickness...Ch. 24 - Prob. 30PCh. 24 - Light of wavelength 5.40 102 nm passes through a...Ch. 24 - A student and his lab partner create a single slit...Ch. 24 - Light of wavelength 587.5 nm illuminates a slit of...Ch. 24 - Microwaves of wavelength 5.00 cm enter a long,...Ch. 24 - A beam of monochromatic light is diffracted by a...Ch. 24 - A screen is placed 50.0 cm from a single slit that...Ch. 24 - A slit of width 0.50 mm is illuminated with light...Ch. 24 - The second-order dark fringe in a single-slit...Ch. 24 - Three discrete spectral lines occur at angles of...Ch. 24 - Intense white light is incident on a diffraction...Ch. 24 - The hydrogen spectrum has a red line at 656 nm and...Ch. 24 - Prob. 42PCh. 24 - A helium-neon laser ( = 632.8 nm) is used to...Ch. 24 - Prob. 44PCh. 24 - Prob. 45PCh. 24 - White light is incident on a diffraction grating...Ch. 24 - Sunlight is incident on a diffraction grating that...Ch. 24 - Monochromatic light at 577 nm illuminates a...Ch. 24 - Light of wavelength 5.00 102 nm is incident...Ch. 24 - Prob. 50PCh. 24 - The angle of incidence of a light beam in air onto...Ch. 24 - Unpolarized light passes through two Polaroid...Ch. 24 - The index of retraction of a glass plate is 1.52....Ch. 24 - At what angle above the horizon is the Sun if...Ch. 24 - Prob. 55PCh. 24 - The critical angle for total internal reflection...Ch. 24 - Equation 24.14 assumes the incident light is in...Ch. 24 - Prob. 58PCh. 24 - Three polarizing plates whose planes are parallel...Ch. 24 - Light of intensity I0 is polarized vertically and...Ch. 24 - Light with a wavelength in vacuum of 546.1 nm...Ch. 24 - Light from a helium-neon laser ( = 632.8 nm) is...Ch. 24 - Laser light with a wavelength of 632.6 nm is...Ch. 24 - In a Youngs interference experiment, the two slits...Ch. 24 - Light of wavelength 546 nm (the intense green line...Ch. 24 - The two speakers are placed 35.0 cm apart. A...Ch. 24 - Interference effects are produced at point P on a...Ch. 24 - Prob. 68APCh. 24 - Figure P24.69 shows a radio-wave transmitter and a...Ch. 24 - Three polarizers, centered on a common axis and...Ch. 24 - Prob. 71APCh. 24 - A plano-convex lens (flat on one side, convex on...Ch. 24 - A diffraction pattern is produced on a screen 1.40...Ch. 24 - Prob. 74AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A Fraunhofer diffraction pattern is produced on a screen located 1.00 m from a single slit. If a light source of wavelength 5.00 107 m is used and the distance from the center of the central bright fringe to the first dark fringe is 5.00 103 m, what is the slit width? (a) 0.010 0 mm (b) 0.100 mm (c) 0.200 mm (d) 1.00 mm (e) 0.005 00 mmarrow_forwardIn Figure P27.7 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4?arrow_forwardIn Figure P36.10 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4? Figure P36.10arrow_forward
- Both sides of a uniform film that has index of refraction n and thickness d are in contact with air. For normal incidence of light, an intensity minimum is observed in the reflected light at λ2 and an intensity maximum is observed at λ1, where λ1 > λ2. (a) Assuming no intensity minima are observed between λ1 and λ2, find an expression for the integer m in Equations 27.13 and 27.14 in terms of the wavelengths λ1 and λ2. (b) Assuming n = 1.40, λ1 = 500 nm, and λ2 = 370 nm, determine the best estimate for the thickness of the film.arrow_forwardOptical flats are flat pieces of glass used to determine the flatness of other optical components. They are placed at an angle above the component as shown in Figure P36.49A, and monochromatic light is incident and observed from above, leading to interference fringes. Figure P36.49C shows the results of one of these tests. What is the approximate difference in the gap thickness between the left and right sides of the optical flat and the component? Is it possible to determine from this figure alone which side has the greater gap thickness (left or right)? Figure P36.49 Problems 49 and 50.arrow_forwardA beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forward
- Light with wavelength A passes through a narrow slit of width w and is seen on a screen which is located at a distance D in front of the slit. The first minimum of the diffraction pattern is at distance d from the middle of the central maximum. Calculate the wavelength of light if D=2.3 m, d=1 mm and w = VAD. Give your answer in nanometers. Answer: Choose... +arrow_forwardLight with wavelength å passes through a narrow slit of width w and is seen on a screen which is located at a distance D in front of the slit. The first minimum of the diffraction pattern is at distance d from the middle of the central maximum. Calculate the wavelength of light if D=1.2 m, d=1 mm and w = VAD. Give your answer in nanometers. Answer: Choose... +arrow_forwardIn a double-slit diffraction experiment, two slits of width 13.7 x 106m are separated by a distance of 27.8 x 10-6 m, and the wavelength of the incident light is 473 nm. The diffraction pattern is viewed on a screen 5.85 m from the slits. Assume Ip is the intensity at a point P, a distance y=80.6 cm on the screen from the central maximum. Which of the following best describes where the point P is on the double-slit diffraction pattern? O The point P is between the m= 4 minimum and the m= 5 minimum. O The point P is between the m= 6 minimum and the m= 7 minimum. O The point P is between the m= 3 minimum and the m= 4 minimum.arrow_forward
- A diffraction pattern is produced on a screen 1.40 m from a single slit, using monochromatic light of wavelength 5.00 x 102 nm. The distance from the center of the central maximum to the first - order maximum is 3.00 mm. Calculate the slit width. Hint: Assume that the first - order maximum is halfway between the first - and second - order minima.arrow_forwardA student using a spectrometer sees three different first-order colors (A, B, & C) at the following angles: ?A1 = 7.7°, ?B1 = 11.4°, & ?C1 = 12.3°. The grating has 3550 slits/cm. A.) Determine the wavelength for each color.?A = ?B = ?C = B.) Determine the third-order angles for each color.?A3 = °?B3 = °?C3 = °arrow_forwardA sheet of paper 0.014 cm thick separates two sheets of glass to form an air wedge 16.5 cm long. When the air wedge is illuminated with monochromatic light, the distance between the centers of the first and eighth dark bands is 2.3 mm. Determine the wavelength of the light, in nm,arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY