EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 9780100793439
Author: KALPAKJIAN
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 50SDP
Would you prefer to machine the part in Fig. 24. If from a preformed blank (near-net shape) rather than a rectangular blank? If so, how would you prepare such a blank? How would the number of parts required influence your answer?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 600mm*30mm flat surface of a plate is to be finish
machined on a shaper .The plate has been fixed with
600 mm side along the tool travel direction. If the tool
over-travel at each end of the plate is 20 mm, average
cutting speed is 8 m/min, feed rate is 0.3 mm/stroke and
the ratio of return time to cutting time of the tool is 1:2
Determine time required for machining?
Hello,
in the second case it was said that 80% of Ore is grinded to a particle size of below 0.4mm. I would like to know why 0.9 mm was chosen as the feed size in the second case.
I need the answer as soon as possible
Chapter 24 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 24 - Explain why milling is such a versatile machining...Ch. 24 - Describe a milling machine. How is it different...Ch. 24 - Describe the different types of cutters used in...Ch. 24 - Define the following: face milling, peripheral...Ch. 24 - Can threads be machined on a mill? Explain.Ch. 24 - What is the difference between feed and feed per...Ch. 24 - Explain the relative characteristics of climb...Ch. 24 - Describe the geometric features of a broach and...Ch. 24 - What is a pull broach? A push broach?Ch. 24 - Why is sawing a commonly used process? Why do some...
Ch. 24 - What advantages do bed-type milling machines have...Ch. 24 - Explain why the axis of a hob is tilted with...Ch. 24 - What is a shell mill? Why is it used?Ch. 24 - Why is it difficult to saw thin sheet metals?Ch. 24 - Of the processes depicted in Fig. 24.2, which is...Ch. 24 - Describe the tool motion during gear shaping.Ch. 24 - When is filing necessary?Ch. 24 - Would you consider the machining processes...Ch. 24 - Why is end milling such an important versatile...Ch. 24 - List and explain factors that contribute to poor...Ch. 24 - Explain why broaching crankshaft bearings is an...Ch. 24 - Several guidelines are presented in this chapter...Ch. 24 - What are the advantages of helical teeth over...Ch. 24 - Explain why hacksaws are not as productive as band...Ch. 24 - What similarities and differences are there in...Ch. 24 - Why do machined gears have to be subjected to...Ch. 24 - How would you reduce the surface roughness shown...Ch. 24 - Why are machines such as the one shown in Fig....Ch. 24 - Comment on your observations concerning the...Ch. 24 - Explain how contour cutting could be started in a...Ch. 24 - Prob. 32QLPCh. 24 - Describe the parts and conditions under which...Ch. 24 - Explain the reason that it is difficult to use...Ch. 24 - Would you recommend broaching a keyway on a gear...Ch. 24 - Prob. 37QTPCh. 24 - A slab-milling operation is being performed at a...Ch. 24 - Show that the distance lc in slab milling is...Ch. 24 - Prob. 40QTPCh. 24 - Calculate the chip depth of cut, tc, and the...Ch. 24 - Estimate the time required to face mill a...Ch. 24 - A 12-in.-long, 1-in.-thick plate is being cut on a...Ch. 24 - A single-thread hob is used to cut 40 teeth on a...Ch. 24 - Assume that m the face-milling operation shown in...Ch. 24 - A slab-milling operation will take place on a part...Ch. 24 - Prob. 47QTPCh. 24 - In describing the broaching operations and the...Ch. 24 - The parts shown in Fig. 24.1 are to be machined...Ch. 24 - Would you prefer to machine the part in Fig. 24....Ch. 24 - Prob. 51SDPCh. 24 - Suggest methods whereby milling cutters of various...Ch. 24 - Prepare a comprehensive table of the process...Ch. 24 - Prob. 55SDPCh. 24 - Make a list of all the processes that can be used...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I need the answer as soon as possiblearrow_forwardA 200 mm long magnesium alloy bar, 63 mm in diameter is turned on a lathe using a high speed steel cutter travelling at 180 mm/min. The spindle rotates at 450 rpm and lathe is equipped with a 10 kW motor, operating at a mechanical efficiency of 92%. The final diameter of the magnesium alloy bar is 59,5 mm. Indicate with a sketch the recommend size and location of the following tool angles: back rake, side rake, end relief, side relief and side and end cutting edge. Calculate the cutting time for the machining process.Calculate the required cutting force.arrow_forward2. The following data was obtained from an orthogonal cutting test: Rake angle = 20° Cutting speed = 100 m/min Chip length before cutting = 29.4 mm Chip length after cutting = 12.9 mm Vertical cutting force 1050 N Horizontal cutting force = 630 N Using Merchant's analysis, calculate (a) resultant force (c) friction force and friction angle (b) shear plane angle (d) total work donearrow_forward
- I need the answer as soon as possiblearrow_forwardA student is performing a turning operation with a workpiece with an initial diameter of 40 mm to produce a 30 mm diameter rod that is 100 mm long. The lathe power is 20 kW and is operating on 85% mechanical efficiency. If the student set the cutting speed to 0.5 m/min and the cutting tool is set to have a rake angle of 5 degrees: a.) What material can we choose for the rod is the coefficient of friction is 0.5? b.) If we select 4130 normalized heat-treated steel for the rod, and coefficient of friction is 0.5, what will the maximum depth of cut we can achieve?arrow_forwardIn a production turning operation, the workpart is 60 mm in diameter and 500 mm long. A feed of 0.75 mm/rev is used in the operation. If cutting speed-9 m/s, the tool must be changed every 4 workparts; But if cutting speed=5 m/s, the tool can be used to produce 50 pieces between tool changes. Determine the Taylor tool life equation for this job. (use the equations given below for solution) L Tm- 1,= Nf N AD, vT" = C %3| AD,L Tm fvarrow_forward
- In a production turning operation, the workpart is 60 mm in diameter and 500 mm long. A feed of 0.75 mm/rev is used in the operation. If cutting speed=9 m/s, the tool must be changed every 4 workparts; But if cutting speed=5 m/s, the tool can be used to produce 50 pieces between tool changes. Determine the Taylor tool life equation for this job. (use the equations given below for solution)arrow_forwardIn a production turning operation, the workpart is 60 mm in diameter and 500 mm long. A feed of 0.75 mm/rev is used in the operation. If cutting speed=9 m/s, the tool must be changed every 4 workparts; But if cutting speed=5 m/s, the tool can be used to produce 50 pieces between tool changes. Determine the Taylor tool life equation for this job. (use the equations given below for solution)arrow_forward12. A 600 mm × 30 mm flat surface of a plate is to be finish machined on a shaper. The plate has been fixed with the 600 mm side along the tool travel direction. If the tool over-travel at each end of the plate is 20 mm, average cutting speed is 8 m/min, feed rate is 0.3 mm/stroke and the ratio of return time to cutting time of the tool is 1:2, the time required for machining will be (a) 8 minutes (b) 12 minutes (c) 16 minutes (d) 20 minutesarrow_forward
- A workpiece of 2000 mm length and 300 mm width was machined by a planning operation with the feed set at 0.3 mm/stroke. If the machine tool executes 10 double strokes/min, What is the planning time for a single pass?arrow_forwardIn a turning operation, the workpiece diameter is Dm=44.00 mm and the diameter after the operation should be 22.00 mm. The cutting speed is set to 105.00 m/min and the federate is 0.03 mm/rev. Calculate the material 3 removal rate (Cm²Imin) for this operation (Do not input units). Your Answer: Answerarrow_forwardSolve the math.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License