EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 9780100793439
Author: KALPAKJIAN
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 24, Problem 37QTP
(a)
To determine
Show that in milling process, the total cutting time can be depending on the value of the non cutting distance that is
(b)
To determine
In milling process, the total cutting time can be depending on the value of the ratio of width of cut
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Using slot milling with a cutting tool surface width of 36mm was
performed from the top surface to cut a workpiece of 85 x 42 x 8 cm into
two equal parts. The milling cutter is 180 mm in diameter and has eight
teeth. Cutting speed = 60 m/min, chip load = 0.35 mm/ tooth, and depth of
cut = 2 mm, given that the setup and machine settings provide an approach
distance of 7mm before actual cutting begins and an overtravel distance of
20 mm after actual cutting has finished, and the return time is a 4-second
for idle pass stroke.
Determine:-
1. What is the total machining time required for the entire workpiece?
2. The maximum metal removal rate during cutting.
The following data was obtained from an
orthogonal cutting test.
Rake angle = 20° Depth of cut = 6 mm
Feed rate = 0.25 mm/rev Cutting speed = 0.6
m/s
Chip length before cutting = 29.4 mm
Vertical cutting force = 1050 N
Horizontal cutting force = 630 N
Chip length after cutting = 12.9 mm
Using Merchant's analysis, calculate
(a) Magnitude of resultant force, (b) shear plane
angle, (c) friction force and friction angle, and (d)
various energies consumed.
Find the machining time, in seconds, and the rate of material removing in mmA3;sec for a turning operation having the following information: 1- Wp diameter is 80mm, 2- the length is 0.12m, 3- the cutting speed is 80m/min, 4- feed i50.5 mm/rev and 5- the depth of cut is 0.002m.
Chapter 24 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 24 - Explain why milling is such a versatile machining...Ch. 24 - Describe a milling machine. How is it different...Ch. 24 - Describe the different types of cutters used in...Ch. 24 - Define the following: face milling, peripheral...Ch. 24 - Can threads be machined on a mill? Explain.Ch. 24 - What is the difference between feed and feed per...Ch. 24 - Explain the relative characteristics of climb...Ch. 24 - Describe the geometric features of a broach and...Ch. 24 - What is a pull broach? A push broach?Ch. 24 - Why is sawing a commonly used process? Why do some...
Ch. 24 - What advantages do bed-type milling machines have...Ch. 24 - Explain why the axis of a hob is tilted with...Ch. 24 - What is a shell mill? Why is it used?Ch. 24 - Why is it difficult to saw thin sheet metals?Ch. 24 - Of the processes depicted in Fig. 24.2, which is...Ch. 24 - Describe the tool motion during gear shaping.Ch. 24 - When is filing necessary?Ch. 24 - Would you consider the machining processes...Ch. 24 - Why is end milling such an important versatile...Ch. 24 - List and explain factors that contribute to poor...Ch. 24 - Explain why broaching crankshaft bearings is an...Ch. 24 - Several guidelines are presented in this chapter...Ch. 24 - What are the advantages of helical teeth over...Ch. 24 - Explain why hacksaws are not as productive as band...Ch. 24 - What similarities and differences are there in...Ch. 24 - Why do machined gears have to be subjected to...Ch. 24 - How would you reduce the surface roughness shown...Ch. 24 - Why are machines such as the one shown in Fig....Ch. 24 - Comment on your observations concerning the...Ch. 24 - Explain how contour cutting could be started in a...Ch. 24 - Prob. 32QLPCh. 24 - Describe the parts and conditions under which...Ch. 24 - Explain the reason that it is difficult to use...Ch. 24 - Would you recommend broaching a keyway on a gear...Ch. 24 - Prob. 37QTPCh. 24 - A slab-milling operation is being performed at a...Ch. 24 - Show that the distance lc in slab milling is...Ch. 24 - Prob. 40QTPCh. 24 - Calculate the chip depth of cut, tc, and the...Ch. 24 - Estimate the time required to face mill a...Ch. 24 - A 12-in.-long, 1-in.-thick plate is being cut on a...Ch. 24 - A single-thread hob is used to cut 40 teeth on a...Ch. 24 - Assume that m the face-milling operation shown in...Ch. 24 - A slab-milling operation will take place on a part...Ch. 24 - Prob. 47QTPCh. 24 - In describing the broaching operations and the...Ch. 24 - The parts shown in Fig. 24.1 are to be machined...Ch. 24 - Would you prefer to machine the part in Fig. 24....Ch. 24 - Prob. 51SDPCh. 24 - Suggest methods whereby milling cutters of various...Ch. 24 - Prepare a comprehensive table of the process...Ch. 24 - Prob. 55SDPCh. 24 - Make a list of all the processes that can be used...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- operation, the shear IS cIose to, In turning operation, spindle speed is set to provide a cutting speed of 2.2 m/: The feed and depth of cut are 0.32 mm and 2.1 mm, respectively. The tool rake angle is 15°. After the cut, the deformed chip thickness is measured to be 0.43 mm. Using the Orthogonal model as an approximation of turning operation, the shear strain is close to, In turning operation, spindle speed is set to provide a cutting speed of 2.4 m/arrow_forward3. Draw the forces and angles involved in the cutting process and calculate shear angle (Ø), friction coefficient and tangential force if ,cutting force = 80 kN , resultant of forces =100kN , friction force=75kN, rake angle =20° undeformed chip thickness = 0.65mm and deformed chip thickness = 0.72mm .arrow_forward2 1.54 Explain how you would go about estimating the C and n values for the four tool materials shown in Fig. 21.17.arrow_forward
- In a production turning operation, the workpart is 60 mm in diameter and 500 mm long. A feed of 0.75 mm/rev is used in the operation. If cutting speed=9 m/s, the tool must be changed every 4 workparts; But if cutting speed=5 m/s, the tool can be used to produce 50 pieces between tool changes. Determine the Taylor tool life equation for this job. (use the equations given below for solution)arrow_forwardA face milling operation is used to machine 6.0 mm from the top surface of a rectangular piece of aluminum 300 mm long by 125 mm wide in a single pass. The cutter follows a path that is centered over the workpiece. It has four teeth and is 150 mm in diameter. Cutting speed = 2.8 m/s, and chip load = 0.27 mm/tooth. Determine (a) the actual machining time to make the pass across the surface and (b) the maximum metal removal rate during cuttingarrow_forwardEstimate the machining time that will be required to finish a vertical flat surface of length 100 mm and depth 20 mm by an end mill cutter of 32 mm diameter and 60 mm length in a milling machine. Assume cutting speed of 30 m/min and feed of 0.12 mm/tooth. Let over run distance equal to approach distance.arrow_forward
- A seamless tube 32 mm outside diameter is turned on a lathe. The spindle speed used is 100 rpm. Rake angle = 35°, depth of cut = 0.125 mm, chip compression ratio = 1.666, feed= 0.1mm/rev, coefficient of friction= 1.53, resultant cutting force= 215.5N. Using the orthogonal model to approximate turning, Calculate: (1) Velocity of chip relative to the tool and workpiece, (2) Forces acting on the chip and the tool during orthogonal cutting, (3) Stresses acting on the shear plane and power dissipated in the shear zone, (4) Specific energy.arrow_forwardThe tool life equation for HSS tool is VT0.14f 0.7d 0.4 = Constant. The tool life (T) of 20 min is obtained using the following cutting conditions: V = 40 m/min, f = 0.30 mm, d = 2.0 mm If speed (V), feed (f) and depth of cut (d) are increased individually by 25% . Calculate the tool life.arrow_forwardFor turning operation, using the table below, find an approximate value for the required speed of rotation of the chuck, in rpm, if the cutting speed for the material 5417 mm/s and the radius of the wp is 0.01 m. Show details of your answer. n | we| oarrow_forward
- In the horizontal milling machine, plain milling is accomplished on the top surface of a rectangular workpiece with dimensions (length 600 mm and width 50 mm). The cutter milling protrudes on both sides of the part. A cutter diameter is 60 mm; the number of teeth is 6. Cutting condition are 60 m/min, 0.25 mm/tooth, and 6.5 mm. Determine :- (a) machining time of the operation. (b) material removal rate during the cut.arrow_forward2. The following data was obtained from an orthogonal cutting test: Rake angle = 20° Cutting speed = 100 m/min Chip length before cutting = 29.4 mm Chip length after cutting = 12.9 mm Vertical cutting force 1050 N Horizontal cutting force = 630 N Using Merchant's analysis, calculate (a) resultant force (c) friction force and friction angle (b) shear plane angle (d) total work donearrow_forwardConsider a profile milling operation, where the initial (stock) geometry has (X,Y,Z) dimensions of 100 mm x 75 mm x 50 mm. The target part has dimensions of 95 mm x 70 mm x 50 mm. The target part is located in the centre of the stock part, i.e. the stock to be removed from all sides is equal. The operation has a cutting time of 1 minute. The tool axis is along the Z direction and the tool diameter is 12 mm having 6 cutting edges. The takes place at 54m/min feed rate of 0.2 mm/rev/tooth. Calculate the axial depth of cut ? process at aarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License