COLLEGE PHYSICS
13th Edition
ISBN: 2810014673880
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 24, Problem 49PE
Unreasonable Results
An LC circuit containing a 2.00-H inductor oscillates at such a frequency that it
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A block of mass m₁ = 10.0 kg is connected to a block of mass m₂ = 34.0 kg by a massless string that passes over a light, frictionless pulley. The 34.0-kg block is connected to a spring that has negligible mass and a force constant of k = 200 N/m as shown in the figure below. The spring is
unstretched when the system is as shown in the figure, and the incline is frictionless. The 10.0-kg block is pulled a distance h = 22.0 cm down the incline of angle 0 = 40.0° and released from rest. Find the speed of each block when the spring is again unstretched.
m/s
Vm1
Vm2
m/s
mi
m2
k
i
Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as in the figure below. The helper spring engages when the main leaf spring is compressed by distance yo, and then helps to
support any additional load. Consider a leaf spring constant of 5.45 × 105 N/m, helper spring constant of 3.60 × 105 N/m, and y = 0.500 m.
Truck body
Dyo
Axle
(a) What is the compression of the leaf spring for a load of 4.90 × 105 N?
m
(b) How much work is done compressing the springs?
]
A skier of mass 75 kg is pulled up a slope by a motor-driven cable.
(a) How much work is required to pull him 50 m up a 30° slope (assumed frictionless) at a constant speed of 2.8 m/s?
KJ
(b) What power (expressed in hp) must a motor have to perform this task?
hp
Chapter 24 Solutions
COLLEGE PHYSICS
Ch. 24 - The direction of the electric field shown in each...Ch. 24 - Is the direction of the magnetic field shown in...Ch. 24 - Why is the direction of the current shown in each...Ch. 24 - In which situation shown in Figure 24.24 will the...Ch. 24 - In which situation shown in Figure 24.25 will the...Ch. 24 - Should the straight wire antenna of a radio he...Ch. 24 - Under what conditions might wires in a DC circuit...Ch. 24 - Give an example of interference of electromagnetic...Ch. 24 - Figure 24.26 shows the interference pattern of two...Ch. 24 - Can an antenna be any length? Explain your answer.
Ch. 24 - If you live in a region that has a particular TV...Ch. 24 - Explain why people who have the lens of their eye...Ch. 24 - How do ?uorescent soap residues make clothing look...Ch. 24 - Give an example of resonance in the reception of...Ch. 24 - Illustrate that the size of details of an object...Ch. 24 - Why don't buildings block radio waves as...Ch. 24 - Make a list of some everyday objects and decide...Ch. 24 - Your friend says mat more patterns and colors can...Ch. 24 - The rate at which information can be transmitted...Ch. 24 - Give an example of energy carried by an...Ch. 24 - In an MRI scan, a higher magnetic field requires...Ch. 24 - Laser vision correction often uses an excimer...Ch. 24 - Verify that the correct value for the speed of...Ch. 24 - Show that, when SI units for 0 and 0 are entered,...Ch. 24 - What is the maximum electric field strength in an...Ch. 24 - The maximum magnetic field strength of an...Ch. 24 - Verify the units obtained for magnetic field...Ch. 24 - (a) Two microwave frequencies are authorized for...Ch. 24 - (a) Calculate the range of wavelength for AM radio...Ch. 24 - A radio station utilizes frequencies between...Ch. 24 - Find the frequency range of visible light, given...Ch. 24 - Combing your hair leads to excess electrons on the...Ch. 24 - Electromagnetic radiation having a 15.0m...Ch. 24 - Approximately what is the smallest detail...Ch. 24 - A radar used to detect the presence of aircraft...Ch. 24 - Some radar systems detect the size and shape of...Ch. 24 - Determine the amount of time it takes for X-rays...Ch. 24 - If you wish to detect details of the size of atoms...Ch. 24 - If the Sun suddenly turned off, we would not know...Ch. 24 - Distances in space are often quoted in units of...Ch. 24 - A certain 50.0-Hz AC power line radiates an...Ch. 24 - During normal bee?ng, the heat creates a maximum...Ch. 24 - (a) The ideal size (most efficient) for a...Ch. 24 - (a) What is the wavelength of 100MHz radio waves...Ch. 24 - (a) What is the frequency at the 193-nm...Ch. 24 - TV-reception antennas for VHF are constructed with...Ch. 24 - Conversations with astronauts on lunar walks had...Ch. 24 - Lunar astronauts placed a reflector on the Moon's...Ch. 24 - Radar is used to determine distances to various...Ch. 24 - Integrated Concepts (a) Calculate the ratio of the...Ch. 24 - Integrated Concepts (a) Calculate the rate in...Ch. 24 - What is the intensity of an electromagnetic wave...Ch. 24 - Find the intensity of an electromagnetic wave...Ch. 24 - Assume the helium-neon lasers commonly used in...Ch. 24 - An AM radio transmitter broadcasts 50.0 kW of...Ch. 24 - Suppose the maximum safe intensity of microwaves...Ch. 24 - A 2.50-m-diameter university communications...Ch. 24 - Lasers can be constructed that produce an...Ch. 24 - Show that for a continuous sinusoidal...Ch. 24 - Suppose a source of electromagnetic waves radiates...Ch. 24 - Integrated Concepts An LC circuit with a 5.00pF...Ch. 24 - Integrated Concepts What capacitance is needed in...Ch. 24 - Integrated Concepts Police radar determines the...Ch. 24 - Integrated Concepts Assume the mostly infrared...Ch. 24 - Integrated Concepts On its highest power se1ting,...Ch. 24 - Integrated Concepts Electromagnetic radiation from...Ch. 24 - Integrated Concepts A 200-turn flat coil of wire...Ch. 24 - Integrated Concepts If electric and magnetic field...Ch. 24 - Unreasonable Results A researcher measures the...Ch. 24 - Unreasonable Results The peak magnetic field...Ch. 24 - Unreasonable Results An LC circuit containing a...Ch. 24 - Unreasonable Results An LC circuit containing a...Ch. 24 - Create Your Own Problem Consider electromagnetic...Ch. 24 - Create Your Own Problem Consider the most recent...
Additional Science Textbook Solutions
Find more solutions based on key concepts
3. CAUTION Why is genetic drift aptly named?
a. It causes allele frequencies to drift up or down randomly.
b. I...
Biological Science (6th Edition)
1. A cyclist goes around a level, circular track at constant speed. Do you agree or disagree with the following...
College Physics: A Strategic Approach (3rd Edition)
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
Fill in the blanks: The nose is to the mouth. The ankle is to the knee. The ring finger is to the inde...
Human Anatomy & Physiology (2nd Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
19. A car starts from rest at a stop sign. It accelerates at 4.0 m/s2 for 6.0 s, coasts for 2.0s, and then slow...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of mass 1.4 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below. The spring is compressed 2.0 cm and is then released from rest. a x = 0 x b (a) A constant friction force of 4.4 N retards the block's motion from the moment it is released. Using an energy approach, find the position x of the block at which its speed is a maximum. cm (b) Explore the effect of an increased friction force of 13.0 N. At what position of the block does its maximum speed occur in this situation? cmarrow_forwardA block of mass m = 3.00 kg situated on a rough incline at an angle of 0 = 37.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (see the figure below). The pulley is frictionelss. The block is released from rest when the spring is unstretched. The block moves 11.0 cm down the incline before coming to rest. Find the coefficient of kinetic friction between block and incline. k=100 N/m Ө marrow_forward23. What is the velocity of a beam of electrons that goes undeflected when passing through perpendicular electric and magnetic fields of magnitude 8.8 X 103 V/m and 7.5 X 10-3 T. respectively? What is the radius of the electron orbit if the electric field is turned off?arrow_forward
- 10. A light bulb emits 25.00 W of power as visible light. What are the average electric and magnetic fields from the light at a distance of 2.0 m?arrow_forward9. Some 1800 years ago Roman soldiers effectively used slings as deadly weapons. The length of these slings averaged about 81 cm and the lead shot that they used weighed about 30 grams. If in the wind up to a release, the shot rotated around the Roman slinger with a period of .15 seconds. Find the maximum acceleration of the shot before being released in m/s^2 and report it to two significant figures.arrow_forwardIn the movie Fast X, a 10100 kg round bomb is set rolling in Rome. The bomb gets up to 17.6 m/s. To try to stop the bomb, the protagonist Dom swings the counterweight of a crane, which has a mass of 354000 kg into the bomb at 3.61 m/s in the opposite direction. Directly after the collision the crane counterweight continues in the same direction it was going at 2.13 m/s. What is the velocity (magnitude and direction) of the bomb right after the collision?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning


Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY