Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 24, Problem 38P
To determine

The classification of waves of frequencies 2Hz , 2kHz , 2MHz , 2GHz , 2THz , 2PHz , 2EHz , 2ZHz and 2YHz on the electromagnetic spectrum and the classification of waves of wavelengths 2km , 2m , 2mm , 2μm , 2nm , 2pm , 2fm , and 2am

Expert Solution & Answer
Check Mark

Answer to Problem 38P

The classification of waves on the basis of frequency is shown below.

Frequency, f Wavelength, λ=cf Classification
2Hz 150Mm Radio
2kHz = 2×103Hz 150km Radio
2MHz = 2×106Hz 150m Radio
2GHz = 2×109Hz 150cm Microwave
2THz = 2×1012Hz 150μm Infrared
2PHz = 2×1015Hz 150nm Ultraviolet
2EHz = 2×1018Hz 150pm X-ray
2ZHz = 2×1021Hz 150fm Gamma ray
2YHz = 2×1024Hz 150am Gamma ray

The classification of waves on the basis of wavelength is shown below.

Wavelength, λ Frequency, f=cλ Classification
2km = 2×103m 1.5×105Hz Radio
2m = 2×100m 1.5×108Hz Radio
2mm = 2×103m 1.5×1011Hz Microwave
2μm = 2×106m 1.5×1014Hz Infrared
2nm = 2×109m 1.5×1017Hz Ultraviolet/ X-ray
2pm = 2×1012m 1.5×1020Hz X-ray/Gamma ray
2fm = 2×1015m 1.5×1023Hz Gamma ray
2am = 2×1018m 1.5×1026Hz Gamma ray

Explanation of Solution

The formula to calculate the wavelength is,

λ=cf (1)

Here,

c is the speed of light.

f is the frequency of the wave.

Substitute 3×108m/s for c and 2Hz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2Hz)=15×107m×106Mm1m=150Mm

Substitute 3×108m/s for c and 2kHz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2kHz×103Hz1kHz)=15×104m×103km1m=150km

Substitute 3×108m/s for c and 2MHz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2MHz×106Hz1MHz)=1.5×102m=150m

Substitute 3×108m/s for c and 2GHz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2GHz×109Hz1GHz)=1.5×101m×103cm1m=150cm

Substitute 3×108m/s for c and 2THz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2THz×1012Hz1THz)=1.5×104m×106μm1m=150μm

Substitute 3×108m/s for c and 2PHz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2PHz×1015Hz1PHz)=1.5×107m×109nm1m=150nm

Substitute 3×108m/s for c and 2EHz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2EHz×1018Hz1EHz)=1.5×1010m×1012pm1m=150pm

Substitute 3×108m/s for c and 2ZHz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2ZHz×1021Hz1ZHz)=1.5×1013m×1015fm1m=150fm

Substitute 3×108m/s for c and 2YHz for f in equation (1) to find the value of λ .

λ=(3×108m/s)(2YHz×1024Hz1YHz)=1.5×1016m×1018am1m=150am

From the above calculation, the table for the wavelength can be deduces and the respective classification of waves is shown.

Frequency, f Wavelength, λ=cf Classification
2Hz 150Mm Radio
2kHz = 2×103Hz 150km Radio
2MHz = 2×106Hz 150m Radio
2GHz = 2×109Hz 150cm Microwave
2THz = 2×1012Hz 150μm Infrared
2PHz = 2×1015Hz 150nm Ultraviolet
2EHz = 2×1018Hz 150pm X-ray
2ZHz = 2×1021Hz 150fm Gamma ray
2YHz = 2×1024Hz 150am Gamma ray

The formula to calculate the frequency is,

f=cλ (2)

Here,

c is the speed of light.

λ is the wavelength of the wave.

Substitute 3×108m/s for c and 2km for λ in equation (2) to find the value of f .

λ=(3×108m/s)(2km×103m1km)=1.5×105Hz

Substitute 3×108m/s for c and 2m for λ in equation (2) to find the value of f .

λ=(3×108m/s)(2m)=1.5×108Hz

Substitute 3×108m/s for c and 2mm for λ in equation (2) to find the value of f .

λ=(3×108m/s)(2mm×103m1mm)=1.5×1011Hz

Substitute 3×108m/s for c and 2μm for λ in equation (2) to find the value of f .

λ=(3×108m/s)(2μm×106m1μm)=1.5×1014Hz

Substitute 3×108m/s for c and 2nm for λ in equation (2) to find the value of f .

λ=(3×108m/s)(2nm×109m1nm)=1.5×1017Hz

Substitute 3×108m/s for c and 2pm for λ in equation (2) to find the value of f .

λ=(3×108m/s)(2pm×1012m1nm)=1.5×1020Hz

Substitute 3×108m/s for c and 2fm for λ in equation (2) to find the value of f .

λ=(3×108m/s)(2am×1015m1am)=1.5×1023Hz

Substitute 3×108m/s for c and 2am for λ in equation (2) to find the value of f .

λ=(3×108m/s)(2am×1018m1am)=1.5×1026Hz

From the above calculation the table for the frequency can be deduces and the respective classification of waves is shown below.

Wavelength, λ Frequency, f=cλ Classification
2km = 2×103m 1.5×105Hz Radio
2m = 2×100m 1.5×108Hz Radio
2mm = 2×103m 1.5×1011Hz Microwave
2μm = 2×106m 1.5×1014Hz Infrared
2nm = 2×109m 1.5×1017Hz Ultraviolet/ X-ray
2pm = 2×1012m 1.5×1020Hz X-ray/Gamma ray
2fm = 2×1015m 1.5×1023Hz Gamma ray
2am = 2×1018m 1.5×1026Hz Gamma ray

Conclusion:

Therefore, the table of classification of waves with the frequencies is shown below.

Frequency, f Wavelength, λ=cf Classification
2Hz 150Mm Radio
2kHz = 2×103Hz 150km Radio
2MHz = 2×106Hz 150m Radio
2GHz = 2×109Hz 150cm Microwave
2THz = 2×1012Hz 150μm Infrared
2PHz = 2×1015Hz 150nm Ultraviolet
2EHz = 2×1018Hz 150pm X-ray
2ZHz = 2×1021Hz 150fm Gamma ray
2YHz = 2×1024Hz 150am Gamma ray

Therefore, the table of classification of waves with the wavelengths is shown below.

Wavelength, λ Frequency, f=cλ Classification
2km = 2×103m 1.5×105Hz Radio
2m = 2×100m 1.5×108Hz Radio
2mm = 2×103m 1.5×1011Hz Microwave
2μm = 2×106m 1.5×1014Hz Infrared
2nm = 2×109m 1.5×1017Hz Ultraviolet/ X-ray
2pm = 2×1012m 1.5×1020Hz X-ray/Gamma ray
2fm = 2×1015m 1.5×1023Hz Gamma ray
2am = 2×1018m 1.5×1026Hz Gamma ray

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Figure 8.14 shows a cube at rest and a small object heading toward it. (a) Describe the directions (angle 1) at which the small object can emerge after colliding elastically with the cube. How does 1 depend on b, the so-called impact parameter? Ignore any effects that might be due to rotation after the collision, and assume that the cube is much more massive than the small object. (b) Answer the same questions if the small object instead collides with a massive sphere.
2. A projectile is shot from a launcher at an angle 0,, with an initial velocity magnitude vo, from a point even with a tabletop. The projectile hits an apple atop a child's noggin (see Figure 1). The apple is a height y above the tabletop, and a horizontal distance x from the launcher. Set this up as a formal problem, and solve for x. That is, determine an expression for x in terms of only v₁, 0, y and g. Actually, this is quite a long expression. So, if you want, you can determine an expression for x in terms of v., 0., and time t, and determine another expression for timet (in terms of v., 0.,y and g) that you will solve and then substitute the value of t into the expression for x. Your final equation(s) will be called Equation 3 (and Equation 4).
Draw a phase portrait for an oscillating, damped spring.

Chapter 24 Solutions

Principles of Physics: A Calculus-Based Text

Ch. 24 - If plane polarized light is sent through two...Ch. 24 - Prob. 5OQCh. 24 - Prob. 6OQCh. 24 - Prob. 7OQCh. 24 - Prob. 9OQCh. 24 - Prob. 10OQCh. 24 - Prob. 11OQCh. 24 - Consider an electromagnetic wave traveling in the...Ch. 24 - Prob. 1CQCh. 24 - Prob. 2CQCh. 24 - Prob. 3CQCh. 24 - Prob. 4CQCh. 24 - Prob. 5CQCh. 24 - Prob. 6CQCh. 24 - Prob. 7CQCh. 24 - Prob. 8CQCh. 24 - Prob. 9CQCh. 24 - Prob. 10CQCh. 24 - Prob. 11CQCh. 24 - Prob. 12CQCh. 24 - Prob. 1PCh. 24 - Prob. 2PCh. 24 - Prob. 3PCh. 24 - A 1.05-H inductor is connected in series with a...Ch. 24 - Prob. 5PCh. 24 - Prob. 6PCh. 24 - Prob. 7PCh. 24 - An electron moves through a uniform electric field...Ch. 24 - Prob. 9PCh. 24 - Prob. 10PCh. 24 - Prob. 11PCh. 24 - Prob. 12PCh. 24 - Figure P24.13 shows a plane electromagnetic...Ch. 24 - Prob. 14PCh. 24 - Review. A microwave oven is powered by a...Ch. 24 - Prob. 16PCh. 24 - A physicist drives through a stop light. When he...Ch. 24 - Prob. 18PCh. 24 - Prob. 19PCh. 24 - A light source recedes from an observer with a...Ch. 24 - Prob. 21PCh. 24 - Prob. 22PCh. 24 - Prob. 23PCh. 24 - Prob. 24PCh. 24 - Prob. 25PCh. 24 - Prob. 26PCh. 24 - Prob. 27PCh. 24 - Prob. 28PCh. 24 - Prob. 29PCh. 24 - Prob. 30PCh. 24 - Prob. 31PCh. 24 - Prob. 32PCh. 24 - Prob. 33PCh. 24 - Prob. 34PCh. 24 - Prob. 35PCh. 24 - Prob. 36PCh. 24 - Prob. 37PCh. 24 - Prob. 38PCh. 24 - Prob. 39PCh. 24 - Prob. 40PCh. 24 - Prob. 41PCh. 24 - Prob. 42PCh. 24 - Prob. 43PCh. 24 - Prob. 44PCh. 24 - Prob. 45PCh. 24 - Prob. 46PCh. 24 - Prob. 47PCh. 24 - Prob. 48PCh. 24 - You use a sequence of ideal polarizing filters,...Ch. 24 - Prob. 50PCh. 24 - Prob. 51PCh. 24 - Figure P24.52 shows portions of the energy-level...Ch. 24 - Prob. 53PCh. 24 - Prob. 54PCh. 24 - Prob. 55PCh. 24 - Prob. 56PCh. 24 - Prob. 57PCh. 24 - Prob. 58PCh. 24 - Prob. 59PCh. 24 - Prob. 60PCh. 24 - Prob. 61PCh. 24 - Prob. 62PCh. 24 - A dish antenna having a diameter of 20.0 m...Ch. 24 - Prob. 65PCh. 24 - Prob. 66PCh. 24 - Prob. 67PCh. 24 - Prob. 68PCh. 24 - Prob. 69PCh. 24 - Prob. 70PCh. 24 - Prob. 71PCh. 24 - A microwave source produces pulses of 20.0-GHz...Ch. 24 - A linearly polarized microwave of wavelength 1.50...Ch. 24 - Prob. 74PCh. 24 - Prob. 75P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY