The correct statement about the
Answer to Problem 1OQ
Option (c) and (d).
Explanation of Solution
Electromagnetic wave is the coupled propagation of electric field and magnetic field at right angles. An EM wave is the result of oscillation of a charged article.
Write the relation between frequency, wavelength and speed of wave in vacuum.
Here,
Conclusion:
It is correct that all electromagnetic waves travels at
It is the inherent property of an electromagnetic wave is that electric field and magnetic field is at right angles and normal to direction of wave propagation. Thus, option (d) is correct.
All electromagnetic waves cannot have same wavelength. Thus, option (a) is incorrect.
All electromagnetic waves cannot have same frequency. Thus, option (b)is incorrect.
Speed of electromagnetic wave through vacuum is independent of frequency. Thus, option (e) is incorrect.
Want to see more full solutions like this?
Chapter 24 Solutions
Principles of Physics: A Calculus-Based Text
- If the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the x-axis, in what possible direction is the wave traveling?arrow_forwardThe electric field of an electromagnetic wave traveling in vacuum is described by the following wave function: E =(5.00V/m)cos[kx(6.00109s1)t+0.40] j where k is the wavenumber in rad/m, x is in m, t s in Find the following quantities: (a) amplitude (b) frequency (c) wavelength (d) the direction of the travel of the wave (e) the associated magnetic field wavearrow_forwardConsider an electromagnetic wave traveling in the positive y direction. The magnetic field associated with the wave at some location at some instant points in the negative x direction as shown in Figure OQ24.12. What is the direction of the electric field at this position and at this instant? (a) the positive x direction (b) the positive y direction (c) the positive z direction (d) the negative z direction (e) the negative y direction Figure OQ24.12arrow_forward
- Suppose the magnetic field of an electromagnetic wave is given by B = (1.5 1010) sin (kx t) T. a. What is the maximum energy density of the magnetic field of this wave? b. What is maximum energy density of the electric field?arrow_forwardA plane electromagnetic wave travels northward. At one instant, its electric field has a magnitude of 6.0 V/m and points eastward. What are the magnitude and direction of the magnetic field at this instant?arrow_forwardAn electromagnetic wave with a peak magnetic field magnitude of 1.50 107 T has an associated peak electric field of what magnitude? (a) 0.500 1015 N/C (b) 2.00 105 N/C (c) 2.20 104 N/C (d) 45.0 N/C (e) 22.0 N/Carrow_forward
- In what range of electromagnetic radiation are the electromagnetic waves emitted by power lines in a country that uses 50-Hz ac current?arrow_forwardWhat is the intensity of an electromagnetic wave with a peak electric field strength of 125 Vim?arrow_forwardCan the human body detect electromagnetic radiation that is outside the visible region of the spectrum?arrow_forward
- Review. Model the electromagnetic wave in a microwave oven as a plane traveling wave moving to the left, with an intensity of 25.0 kW/m2. An oven contains two cubical containers of small mass, each full of water. One has an edge length of 6.00 cm, and the other, 12.0 cm. Energy falls perpendicularly on one face of each container. The water in the smaller container absorbs 70.0% of the energy that falls on it. The water in the larger container absorbs 91.0%. That is, the fraction 0.300 of the incoming microwave energy passes through a 6.00-cm thickness of water, and the fraction (0.300)(0.300) = 0.090 passes through a 12.0-cm thickness. Assume a negligible amount of energy leaves either container by heat. Find the temperature change of the water in each container over a time interval of 480 s.arrow_forwardA dish antenna having a diameter of 20.0 m receives (at normal incidence) a radio signal from a distant source as shown in Figure P24.63. The radio signal is a continuous sinusoidal wave with amplitude Emax = 0.200 V/m. Assume the antenna absorbs all the radiation that falls on the dish. (a) What is the amplitude of the magnetic field in this wave? (b) What is the intensity of the radiation received by this antenna? (c) What is the power received by the antenna? (d) What force is exerted by the radio waves on the antenna? Figure P24.63arrow_forwardDuring normal bee?ng, the heat creates a maximum 4.00mv potential across 0.300 m of a person’s chest, creating a 1.00-Hz electromagnetic wave. (a) What is the maximum electric field strength created? (b) What is the corresponding maximum magnetic field strength in the electromagnetic wave? (c) What is the wavelength of the electromagnetic wave?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning