Concept explainers
Repeat Prob. 24.35, but use (a) Simpson's
(a)
To calculate: The work done for the given equations of
Answer to Problem 36P
Solution:
The work done byusing 4-segment Simpson 1/3 rule is
The work done by using 8-segment Simpson 1/3 rule is
The work done by using 16-segment Simpson 1/3 rule is
Explanation of Solution
Given Information:
The given expressions are as follows,
Work done in integral form (Refer Sec. 24.4)
If the direction between the force and displacement changes between initial and final position, then the work done is written as,
Here,
Formula Used:
Simpson’s 1/3 rule.
Calculation:
Calculate the work done.
Substitute the value of
Force
And,
4-segment Simpson’s 1/3 rule.
Calculate integral from
0 | 0 |
1 | 7.5 |
2 | 15 |
3 | 22.5 |
4 | 30 |
Calculate
Calculate
Similarly, calculate
Calculate
Calculate
Calculate
Similarly, calculate
Calculate
Substitute value of
Calculate
Substitute value of
Similarly, calculate all the other values.
All the values which are calculated in are tabulated below,
0 | 0 | 0 | 0.8 | 0 |
1 | 7.5 | 9.46875 | 1.315625 | 2.39001847 |
2 | 15 | 13.875 | 1.325 | 3.376187019 |
3 | 22.5 | 13.21875 | 1.334375 | 3.096161858 |
4 | 30 | 7.5 | 1.85 | –2.066926851 |
Apply Simpson’s 1/3 rule to calculate work.
According to Simpson’s 1/3 rule integral
Here,
Work done is given as,
Here,
Calculate
Substitute values of
Hence, the value of integral is
8-segment Simpson’s 1/3 rule.
For eight segmented rule value of
All the values are tabulated below.
0 | 0 | 0 | 0.8 | 0 |
1 | 3.75 | 5.367188 | 1.152734 | 2.179025 |
2 | 7.5 | 9.46875 | 1.315625 | 2.390018 |
3 | 11.25 | 12.30469 | 1.351953 | 2.671355 |
4 | 15 | 13.875 | 1.325 | 3.376187 |
5 | 18.75 | 14.17969 | 1.298047 | 3.819728 |
6 | 22.5 | 13.21875 | 1.334375 | 3.096162 |
7 | 26.25 | 10.99219 | 1.497266 | 0.807535 |
8 | 30 | 7.5 | 1.85 | –2.06693 |
Apply Simpson’s 1/3 rule to calculate work done,
According to Simpson’s 1/3 rule integral
Work done is given by,
Here,
Substitute values of
Calculate
Hence, the value of integral is
16 segment Simpson’s 1/3 rule.
The whole interval from
All the values are tabulated below.
0 | 0 | 0 | 0.8 | 0 |
1 | 1.875 | 2.841797 | 1.004053 | 1.525726 |
2 | 3.75 | 5.367188 | 1.152734 | 2.179025 |
3 | 5.625 | 7.576172 | 1.253955 | 2.360482 |
4 | 7.5 | 9.46875 | 1.315625 | 2.390018 |
5 | 9.375 | 11.04492 | 1.345654 | 2.465721 |
6 | 11.25 | 12.30469 | 1.351953 | 2.671355 |
7 | 13.125 | 13.24805 | 1.342432 | 2.999159 |
8 | 15 | 13.875 | 1.325 | 3.376187 |
9 | 16.875 | 14.18555 | 1.307568 | 3.691061 |
10 | 18.75 | 14.17969 | 1.298047 | 3.819728 |
11 | 20.625 | 13.85742 | 1.304346 | 3.648784 |
12 | 22.5 | 13.21875 | 1.334375 | 3.096162 |
13 | 24.375 | 12.26367 | 1.396045 | 2.132203 |
14 | 26.25 | 10.99219 | 1.497266 | 0.807535 |
15 | 28.125 | 9.404297 | 1.645947 | –0.70608 |
16 | 30 | 7.5 | 1.85 | –2.06693 |
Apply Simpson’s 1/3 rule to calculate work done.
According to Simpson’s 1/3 rule integral
In the above expression
Work done is given by,
Here,
Substitute values of
Calculate
Hence, the work done is
(b)
To calculate: The work done for the given equations of
Answer to Problem 36P
Solution: The work done is obtained to be
Explanation of Solution
Given Information:
The given expressions are as follows,
Work done in integral form (Refer Sec. 24.4).
If the direction between the force and displacement changes between initial and final position, then the work done is written as,
Here,
Formula Used:
Single segment trapezoidal rule.
Multiple application trapezoidal rule.
An estimate of relative percentage error.
Calculation:
The integral is,
And,
Here,
For Romberg Iteration- 1, 2, 4 and 8 segment trapezoidal rule integral needs to be calculated which will be used for complexity calculation in higher order correction of integral estimates.
The Integral for single segment trapezoidal rule is,
Substitute
The Integral for multiple application trapezoidal rules is,
Here,
For calculation of
Hence,
So,
For calculation of
Hence,
So,
For calculation of
So,
Hence,
The complexity notation for Romberg iteration is,
An estimate of relative percentage error is,
Setting up the table for Romberg iteration,
The first table of
From the Romberg table of iteration, the work done is obtained to be
(c)
To calculate: The work done for the given equations of
Answer to Problem 36P
Solution: The work done using Gauss Quadrature is obtained to be
Explanation of Solution
Given Information:
The given expressions are as follows,
Work done in integral form (Refer Sec. 24.4)
If the direction between the force and displacement changes between initial and final position, then the work done is written as,
Here,
Formula Used:
Change of variables formula,
Gauss Quadrature formula for integral calculation,
Calculation:
The integral is,
And,
Change of variables is required so as to transform the original limits of given original integral to
Substitute
Differentiate
So, the function is,
Substitute the value of
The integral becomes,
Therefore, Integrals is suitable for Gauss Quadrature calculation.
The weighting factors for 2-point Gauss Quadrature evaluation is,
And,
The Integral is given by,
Substitute the values from above.
Three-Point Gauss Quadrature factor will be tried out to reduce the truncation error.
The weighting factors for 3-Point Gauss Quadrature evaluation is,
And,
The Integral is given by,
Substitute the value from above.
The obtained value is acceptable as the relative percentage error is less than1%.
Hence, the value of
Want to see more full solutions like this?
Chapter 24 Solutions
Numerical Methods for Engineers
Additional Math Textbook Solutions
Intermediate Algebra (13th Edition)
Precalculus
Probability And Statistical Inference (10th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Elementary Statistics: Picturing the World (7th Edition)
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
- Use Variation of Parameters to solvearrow_forwardMoment of a Force 2.14 Ma= Does Box Tip Over?=- 2.15 (change beam weight to 900 N)) X= 2.17 P= Varignon's Theorem 2.19 (change story height to 5m) Ma= 2.21 MA=. MB=_ 2.23 (change maximum tension to 2500 lbs) W= Couple and Moment of a Couple 2.24 MA=. MB=_ 2.26 (change force to 110 KN) F= M= Answer all parts, please.arrow_forwardread chapter 10 welding principles and applications, short-circuiting, transfer, GMAW – S. Explain why the power supply is critical in the short-circuiting transfer process. Discuss what happens if there’s too much or two little inductance.arrow_forward
- a. Find the general flow pattern of the network shown in the figure. b. Assuming that the flow must be in the directions indicated, find the minimum flows in the branches denoted by X2, X3, X4, and x5 a. Choose the correct answer below and fill in the answer boxes to complete your choice. OA. x₁ = X2 is free X3 is free B. X₁ is free x2= ×4 is free X5 is free X6 = X3= X4 X5 X6 = 11 = ○ C. D. X2 is free X3= X4 is free X5 is free x2 = 0 X3 is free ×4 = X6 is free gave 20 30 12 C 804 60-> B <<90 314 X4D -80 E T 20 40 xarrow_forwardConsider an economy with three sectors, Chemicals & Metals, Fuels & Power, and Machinery. Chemicals sells 30% of its output to Fuels and 60% to Machinery and retains the rest. Fuels sells 70% of its output to Chemicals and 20% to Machinery and retains the rest. Machinery sells 40% of its output to Chemicals and 30% to Fuels and retains the rest. Complete parts (a) through (c) below a. Construct the exchange table for this economy. Distribution of Output from: Chemicals Fuels Machinery (Type integers or decimals.) Purchased by: Chemicals Fuels Machineryarrow_forward3) Find the general solution to the following differential equation. d²x = +4x sin² (2t) dt²arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning