21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Question
Chapter 24, Problem 29QP
To determine
The reason that existence of complex living in the universe does not violate second law of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A system's "entropy" is
(a) the amount of work the system can do.
(b) the amount of microscopic work the system can do.
(c) the amount of force the system could exert.
(d) the amount of thermal energy in the system.
(e) the amount of microscopic disorganization in the system.
Your last exam is done and you have a two week break before the next semester starts. You look around and see that your room is a mess. You haven't had the time to pick up after yourself the last few days. As you start putting all your stuff in their proper places you wonder,
"Am I not creating order from disorder? Didn't the Second Law of Thermodynamics just tell me that any process that reduces the Entropy (Disorder) of the Universe is forbidden? But I create order from disorder every time I clean my room!"
Did you just break the Second Law of Thermodynamics or can you explain why your actions (cleaning your room) does not violate the Second Law? Argue your case is a few sentences.
------
The temperature in the deep interiors of some giant molecular clouds in the Milky Way galaxy is 50 K. Compare the amount of energy that would have to be transferred to this environment to the amount that would have to be transferred to a room temperature environment to bring about a 7.7 J/K increase in the entropy of the universe in each case.
ΔEroom temp/ ΔEMilky Way =
Chapter 24 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 24.1 - Prob. 24.1CYUCh. 24.2 - Prob. 24.2CYUCh. 24.3 - Prob. 24.3ACYUCh. 24.3 - Prob. 24.3BCYUCh. 24.4 - Prob. 24.4CYUCh. 24 - Prob. 1QPCh. 24 - Prob. 2QPCh. 24 - Prob. 3QPCh. 24 - Prob. 4QPCh. 24 - Prob. 5QP
Ch. 24 - Prob. 6QPCh. 24 - Prob. 7QPCh. 24 - Prob. 8QPCh. 24 - Prob. 9QPCh. 24 - Prob. 10QPCh. 24 - Prob. 11QPCh. 24 - Prob. 12QPCh. 24 - Prob. 13QPCh. 24 - Prob. 14QPCh. 24 - Prob. 15QPCh. 24 - Prob. 16QPCh. 24 - Prob. 17QPCh. 24 - Prob. 18QPCh. 24 - Prob. 20QPCh. 24 - Prob. 21QPCh. 24 - Prob. 22QPCh. 24 - Prob. 23QPCh. 24 - Prob. 24QPCh. 24 - Prob. 25QPCh. 24 - Prob. 26QPCh. 24 - Prob. 27QPCh. 24 - Prob. 29QPCh. 24 - Prob. 30QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What can be said about the total entropy of the universe? Why is it true?arrow_forwardA bit of computer memory is some physical object that can be in two different states, often interpreted as 0 and 1. A byte is eight bits, a kilobyte is 1024 (= 210) bytes, a megabyte is 1024 kilobytes, and a gigabyte is 1024 megabytes. If this entropy is dumped into an environment at room temperature, how much heat must come along with it? Is this amount of heat significant?arrow_forwardOn a cold day, 24500 J of heat leaks out of a house. The inside temperature is 21°C, and the outside temperature is -15°C. What is the increase in the entropy of the universe that this heat loss produces?arrow_forward
- A growing plant creates a highly complex and organized structure out of simple materials such as air, water, and trace minerals. Does this violate the second law of thermodynamics? Why or why not? What is the plant’s ultimate source of energy? Explain.arrow_forwardUsing the Second Law of Thermodynamics as stated by Clausius and also using Boltzmann’s definition of entropy, explain why the entropy change of the Universe is always positive.arrow_forwardA woman expends 95 kJ of energy in walking a kilometer. The energy is supplied by the metabolic breakdown of food intake and has a 35 percent efficiency. If the woman drives a car over the same distance, how much energy is used if the car gets 8.8 km per liter of gasoline (approximately 20 mi/gal)? The density of gasoline is 0.71 g/mL, and its enthalpy of combustion is 49 kJ/g. Enter your answer in scientific notation. Compare the efficiencies of the two processes. kJ (driving)/ kJ (walking)arrow_forward
- An irreversible process takes place by which the entropy of the universe increases by 1.52 J/K. If the temperature of the environment in which the process occurred is 280 K, how much energy (in J) was made unavailable for useful work as a result?arrow_forwardWhich of the following statements best describe the second law of thermodynamics? a) The total energy of the universe is a constant b) The efficiency of a heat engine can never be greater than 50 percent c) The entropy of the universe is always increasing d) As the altitude increases, the boiling point of water decreases.arrow_forwardthe entropy of the universe is continually decreasing constant continually increasing the same as the energy E zeroarrow_forward
- What, thermodynamically speaking, do living things exist for? -Free Energy that is not used for work is expressed as -What constitutes a Universe?arrow_forward(a) Considering the numbers of heads and tails, how many macrostates are there when five coins are tossed? (b) What is the total number of possible microstates in tossing five coins? (c) Find the number of microstates for each macrostate and be sure that the total agrees with your answer to part (b).arrow_forward(A) Explain with examples by making three separate definitions of the second law of thermodynamics.(B) What is "heat death" in the universe? How do you see the future in light of the changes in the universe from the big bang to the present?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY