21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 24, Problem 13QP
To determine
The reason for the existence of intelligent life around the stars of types F, G, K, and M.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Water is life. Nothing survives without water. Water is abundant everywhere. Now, we said
before that water contains the primary components of good fuel. The hydrogen. Is there is a
possibility that water will be a source of Hydrogen? Or we mean, we can subject water in a
certain process and we are deriving Hydrogen from it continuously? If yes, how?
Explain pre main sequence evolution, early post main sequence evolution and advanced evolutionary stages.
Suppose that stars were born at random times over the last 10e10 years. The rate ofstar formation is simply the number of stars divided by 10e10 years. The fraction ofstars with detected extrasolar planets is at least 9 %. The rate of star formation can bemultiplied by this fraction to find the rate planet formation. How often (in years) doesa planetary system form in our galaxy? Assume the Milky Way contains 7 × 10e11 stars.
I've done this problem 3 different times from scratch and looked at similar problems here. Each time my answer is 1.587 (1.59 rounded to 2 significant figures), but when I submit, it says the answer is wrong. What do you think?
Chapter 24 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 24.1 - Prob. 24.1CYUCh. 24.2 - Prob. 24.2CYUCh. 24.3 - Prob. 24.3ACYUCh. 24.3 - Prob. 24.3BCYUCh. 24.4 - Prob. 24.4CYUCh. 24 - Prob. 1QPCh. 24 - Prob. 2QPCh. 24 - Prob. 3QPCh. 24 - Prob. 4QPCh. 24 - Prob. 5QP
Ch. 24 - Prob. 6QPCh. 24 - Prob. 7QPCh. 24 - Prob. 8QPCh. 24 - Prob. 9QPCh. 24 - Prob. 10QPCh. 24 - Prob. 11QPCh. 24 - Prob. 12QPCh. 24 - Prob. 13QPCh. 24 - Prob. 14QPCh. 24 - Prob. 15QPCh. 24 - Prob. 16QPCh. 24 - Prob. 17QPCh. 24 - Prob. 18QPCh. 24 - Prob. 20QPCh. 24 - Prob. 21QPCh. 24 - Prob. 22QPCh. 24 - Prob. 23QPCh. 24 - Prob. 24QPCh. 24 - Prob. 25QPCh. 24 - Prob. 26QPCh. 24 - Prob. 27QPCh. 24 - Prob. 29QPCh. 24 - Prob. 30QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why are upper-main-sequence (high-luminosity) host stars unlikely sites for intelligent civilizations?arrow_forwardIf you could search for life in the galaxy shown in this image, would you look among stars in the disk, in the central bulge, in the halo, or in all of those places? Discuss the factors that influence your decision.arrow_forwardA radio broadcast left Earth in 1911. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.50 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.20. How many possible planets with life could have heard this signal?arrow_forward
- Would a human have been possible during the first generation of stars that formed right after the Big Bang? Why or why not?arrow_forwardWhy are we limited to finding life on planets orbiting other stars to situations where the biosphere has created planet-scale changes?arrow_forwardMost of the stars we can see with the unaided eye in our night sky are hundreds or even thousands of lightyears away from Earth. (The very closest ones are only a few dozen lightyears away, but most are much further.) The vast majority of stars in our galaxy are many tens of thousands of lightyears away. IF intelligent life existed on planets orbiting some of these stars – and that’s a huge IF! – comment on the likelihood and practicality of (a) visiting, (b) communicating with, or (c) verifying the existence of those life forms. Describe how you might go about approaching EACH of these three tasks, or if you think they are even possible. (One or two sentences for each part would be appropriate.)arrow_forward
- Suppose that stars were born at random times over the last 1010 years. The rate of star formation is simply the number of stars divided by 1010 years. The fraction of stars with detected extrasolar planets is at least 11 %. The rate of star formation can be multiplied by this fraction to find the rate planet formation. How often (in years) does a planetary system form in our galaxy? Assume the Milky Way contains 3 × 1011 stars.arrow_forwardF2 Planets in the habitable zone of their stars: 1 #3 3 O are so far from their stars that it is very difficult to discover them O are at a temperature where water can exist as a liquid on the planet's surface O are always the planets closest to the star are also called hot Jupiters O cannot exist around stars that are red dwarfs (spectral type M) E G D F3 $ 54 2 4 R F4 LL F DII % 5 Q Search F5 T 9 -0. G < 6 A F6 Y * F7 & 7 H PrtScn U FB 8 Home Jarrow_forwardTutorial A radio broadcast left Earth in 1925. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.30 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.85. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1925, distance in light years = time since broadcast left Earth. d = tnow - tbroadcast d = light years Submit Skip (you cannot come back)arrow_forward
- Tutorial A radio broadcast left Earth in 1923. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.50 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.40. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1923, distance in light years = time since broadcast left Earth. d = tnow - broadcast d = 97 97 light years Part 2 of 3 Since the radio signal travels in all directions, it expanded as a sphere with a radius equal to the distance it has traveled so far. To determine the number of star systems this signal has reached, we need to determine the volume of that sphere. V, = Vb…arrow_forwardImagine that in the future, scientists plan on colonizing planets that orbit other stars. Based on your knowledge of the life cycle of stars, decide which type of star (High mass or Low mass) the planet should orbit that would allow for human life to safely live on that planet for the longest period of time. Explain your answer using examples from the life cycle of each star.arrow_forwardhow did you get from 0m1C1(T-T1)+m2C2(T-T2)=0 to T1=m2C2(T-T2)m1C1+Tarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY