The chemical equation for the fermentation of glucose into ethanol is
C6H12O6(s) → 2 C2HsOH(ℓ)+ 2 CO2(g)
Using ∆fH° values at 25 °C, calculate ∆rH° for this reaction. (See Question 23 for ∆fH° for glucose.)
Interpretation:
The value of
Concept introduction:
The change in the enthalpy of a reaction when reactant is converted into product under standard conditions is called standard enthalpy of reaction.
The expression for standard enthalpy of reaction is,
Here,
Explanation of Solution
The value of
Given:
Refer to Appendix L for the values of standard enthalpy of formation.
The standard enthalpy of formation of
The standard enthalpy of formation of
The standard enthalpy of formation of
The given balanced chemical equation is:
The
Substitute the value of
The value of
Want to see more full solutions like this?
Chapter 24 Solutions
Chemistry & Chemical Reactivity
- Which contains greater entropy, a quantity of frozen benzene or the same quantity of liquid benzene at the same temperature? Explain in terms of the dispersal of energy in the substance.arrow_forwardSolid NH4NO3 is placed in a beaker containing water at 25 C. When the solid has completely dissolved, the temperature of the solution is 23.5 C. (a) Was the process exothermic or endothermic? (b) Was the process spontaneous? (c) Did the entropy of the system increase? (d) Did the entropy of the universe increase?arrow_forwardWhat is entropy? Why is entropy important?arrow_forward
- For each of the following processes, identify the systemand the surroundings. Identify those processes that arespontaneous. For each spontaneous process, identify theconstraint that has been removed to enable the process to occur: Ammonium nitrate dissolves in water. Hydrogen and oxygen explode in a closed bomb. A rubber band is rapidly extended by a hangingweight. The gas in a chamber is slowly compressed by aweighted piston. A glass shatters on the floor.arrow_forwardFor each process, predict whether entropy increases or decreases, and explain how you arrived at your prediction. 2 CO2(g) → 2 CO(g) + O2(g) NaCl(s) → NaCl(aq) MgCO3(s) → MgO(s) + CO2(g)arrow_forwardFor the reaction NO(g)+NO2(g)N2O3(g) , use tabulated thermodynamic data to calculate H and S. Then use those values to answer the following questions. (a) Is this reaction spontaneous at 25°C? Explain your answer. (b) If the reaction is not spontaneous at 25°C, will it become spontaneous at higher temperatures or lower temperatures? (c) To show that your prediction is accurate, choose a temperature that corresponds to your prediction in part (b) and calculate G . (Assume that both enthalpy and entropy are independent of temperature.)arrow_forward
- In muscle cells under the condition of vigorous exercise, glucose is converted to lactic acid (lactate),CH3CHOHCOOH, by the chemical reaction C6H12O6 2 CH3CHOHCOOHrG = 197 kJ/mol (a) If all of the Gibbs free energy from this reaction wereused to convert ADP to ATP, calculate how many molesof ATP could be produced per mole of glucose. (b) The actual reaction involves the production of 3 molATP per mole of glucose. Calculate the rG for thisoverall reaction. (c) Is the overall reaction in part (b) reactant-favored orproduct-favored?arrow_forwardFor the ammonia synthesis reaction ⇌ Does the entropy effect favor products? Explain your answer. Does the energy effect favor products? Explain your answer. Is the equilibrium concentration of NH3(g) greater at high or low temperature? Explain.arrow_forwardThe molecular scale pictures below show snapshots of a strong acid at three different instants after it is added to water. Place the three pictures in the correct order so that they show the progress of the spontaneous process that takes place as the acid dissolves in the water. Explain your answer in terms of entropyarrow_forward
- For one day, keep a log of all the activities you undertake that consume Gibbs free energy. Distinguish betweenGibbs free energy provided by nutrient metabolism andthat provided by other energy resources.arrow_forwardIndicate whether the following processes are spontaneous or nonspontaneous. (a) Liquid water freezing at a temperature below its freezing point (b) Liquid water freezing at a temperature above its freezing point (c) The combustion of gasoline (d) A ball thrown into the air (e) A raindrop falling to the ground (f) Iron rusting in a moist atmospherearrow_forwardDescribe the energy and entropy changes that occur in the following processes, and indicate whether the processes are spontaneous under the conditions stated: a.Lumber becomes a house b.A seed grows into a tree. c.On a hot day, water evaporates from a lake.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning