Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 24, Problem 24P

(a)

To determine

The electric field at 10.0cm perpendicular to the length of the filament.

(a)

Expert Solution
Check Mark

Answer to Problem 24P

The electric field at 10.0cm is 16.2MN/C.

Explanation of Solution

Consider the charged filament is coincided with the Gaussian cylinder of length l and radius r.

Write the expression for Gauss law.

    Eda=Qencε0

Here, E is the electric field, Qenc is the enclosed charge, a is the surface area of the Gaussian cylinder and ε0 is the permittivity of free space.

Substitute |E|(2×π×r×l) for Eda and λ×l for Qenc in the above equation.

    |E|(2×π×r×l)=λ×lε0|E|=λε0(2×π×r)|E|=2λε0(4×π×r)|E|=ke×2×λr                                                                                           (I)

Here, λ is the charge per unit length, |E| is the electric field, r is the radius of the Gaussian cylinder and ke is the coulomb constant.

Conclusion:

Substitute 8.987×109Nm2/C2 for ke, 10.0cm for r and 90.0μC/m for λ in Equation (I) to calculate |E|.

    E=8.987×109Nm2/C2(2×(90.0μC/m)(1×106C/m1μC/m)10.0cm(1×102m1cm))=8.987×109Nm2/C2(2×(90.0×106C/m)0.1m)=8.987×109Nm2/C2(1800C/m2×106)=16.2×106N/C(1MN/C1×106N/C)

Further solve the above equation.

    |E|=16.2MN/C

Therefore, the electric field at 10.0cm is 16.2MN/C.

(b)

To determine

The electric field at 20.0cm, perpendicular to the filament.

(b)

Expert Solution
Check Mark

Answer to Problem 24P

The electric field at 20.0cm is 8.09MN/C.

Explanation of Solution

Conclusion:

Substitute 8.987×109Nm2/C2 for ke, 20.0cm for r and 90.0μC/m for λ in Equation (I) to calculate |E|.

    E=8.987×109Nm2/C2(2×(90.0μC/m)(1×106C/m1μC/m)20.0cm(1×102m1cm))=8.987×109Nm2/C2(2×(90.0×106C/m)0.2m)=8.987×109Nm2/C2(900C/m2×106)=8088300N/C×(1MN/C1×106N/C)

Further solve the above equation.

    |E|=8.09MN/C

Therefore, the electric field at 20.0cm is 8.09MN/C.

(c)

To determine

The electric field at 100cm, perpendicular to the filament

(c)

Expert Solution
Check Mark

Answer to Problem 24P

The electric field at 100cm is 1.62MN/C.

Explanation of Solution

Conclusion:

Substitute 8.987×109Nm2/C2 for ke, 100cm for r and 90.0μC/m for λ in Equation (I) to calculate |E|.

    E=8.987×109Nm2/C2(2×(90.0μC/m)(1×106C/m1μC/m)100cm(1×102m1cm))=8.987×109Nm2/C2(2×(90.0×106C/m)1m)=8.987×109Nm2/C2(180C/m2×106)=1617660N/C(1MN/C1×106N/C)

Further solve the above equation.

    |E|=1.62MN/C

Therefore, the electric field at 100cm is 1.62MN/C.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]

Chapter 24 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Ch. 24 - Prob. 9OQCh. 24 - Prob. 10OQCh. 24 - Prob. 11OQCh. 24 - Prob. 1CQCh. 24 - Prob. 2CQCh. 24 - Prob. 3CQCh. 24 - Prob. 4CQCh. 24 - Prob. 5CQCh. 24 - Prob. 6CQCh. 24 - Prob. 7CQCh. 24 - Prob. 8CQCh. 24 - Prob. 9CQCh. 24 - Prob. 10CQCh. 24 - Prob. 11CQCh. 24 - A flat surface of area 3.20 m2 is rotated in a...Ch. 24 - A vertical electric field of magnitude 2.00 104...Ch. 24 - Prob. 3PCh. 24 - Prob. 4PCh. 24 - Prob. 5PCh. 24 - A nonuniform electric field is given by the...Ch. 24 - An uncharged, nonconducting, hollow sphere of...Ch. 24 - Prob. 8PCh. 24 - Prob. 9PCh. 24 - Prob. 10PCh. 24 - Prob. 11PCh. 24 - A charge of 170 C is at the center of a cube of...Ch. 24 - Prob. 13PCh. 24 - A particle with charge of 12.0 C is placed at the...Ch. 24 - Prob. 15PCh. 24 - Prob. 16PCh. 24 - Prob. 17PCh. 24 - Find the net electric flux through (a) the closed...Ch. 24 - Prob. 19PCh. 24 - Prob. 20PCh. 24 - Prob. 21PCh. 24 - Prob. 22PCh. 24 - Prob. 23PCh. 24 - Prob. 24PCh. 24 - Prob. 25PCh. 24 - Determine the magnitude of the electric field at...Ch. 24 - A large, flat, horizontal sheet of charge has a...Ch. 24 - Prob. 28PCh. 24 - Prob. 29PCh. 24 - A nonconducting wall carries charge with a uniform...Ch. 24 - A uniformly charged, straight filament 7.00 m in...Ch. 24 - Prob. 32PCh. 24 - Consider a long, cylindrical charge distribution...Ch. 24 - A cylindrical shell of radius 7.00 cm and length...Ch. 24 - A solid sphere of radius 40.0 cm has a total...Ch. 24 - Prob. 36PCh. 24 - Prob. 37PCh. 24 - Why is the following situation impossible? A solid...Ch. 24 - A solid metallic sphere of radius a carries total...Ch. 24 - Prob. 40PCh. 24 - A very large, thin, flat plate of aluminum of area...Ch. 24 - Prob. 42PCh. 24 - Prob. 43PCh. 24 - Prob. 44PCh. 24 - A long, straight wire is surrounded by a hollow...Ch. 24 - Prob. 46PCh. 24 - Prob. 47PCh. 24 - Prob. 48APCh. 24 - Prob. 49APCh. 24 - Prob. 50APCh. 24 - Prob. 51APCh. 24 - Prob. 52APCh. 24 - Prob. 53APCh. 24 - Prob. 54APCh. 24 - Prob. 55APCh. 24 - Prob. 56APCh. 24 - Prob. 57APCh. 24 - An insulating solid sphere of radius a has a...Ch. 24 - Prob. 59APCh. 24 - Prob. 60APCh. 24 - Prob. 61CPCh. 24 - Prob. 62CPCh. 24 - Prob. 63CPCh. 24 - Prob. 64CPCh. 24 - Prob. 65CPCh. 24 - A solid insulating sphere of radius R has a...Ch. 24 - Prob. 67CPCh. 24 - Prob. 68CPCh. 24 - Prob. 69CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY