Physics for Scientists and Engineers with Modern Physics, Technology Update
Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 24, Problem 24P

(a)

To determine

The electric field at 10.0cm perpendicular to the length of the filament.

(a)

Expert Solution
Check Mark

Answer to Problem 24P

The electric field at 10.0cm is 16.2MN/C.

Explanation of Solution

Consider the charged filament is coincided with the Gaussian cylinder of length l and radius r.

Write the expression for Gauss law.

    Eda=Qencε0

Here, E is the electric field, Qenc is the enclosed charge, a is the surface area of the Gaussian cylinder and ε0 is the permittivity of free space.

Substitute |E|(2×π×r×l) for Eda and λ×l for Qenc in the above equation.

    |E|(2×π×r×l)=λ×lε0|E|=λε0(2×π×r)|E|=2λε0(4×π×r)|E|=ke×2×λr                                                                                           (I)

Here, λ is the charge per unit length, |E| is the electric field, r is the radius of the Gaussian cylinder and ke is the coulomb constant.

Conclusion:

Substitute 8.987×109Nm2/C2 for ke, 10.0cm for r and 90.0μC/m for λ in Equation (I) to calculate |E|.

    E=8.987×109Nm2/C2(2×(90.0μC/m)(1×106C/m1μC/m)10.0cm(1×102m1cm))=8.987×109Nm2/C2(2×(90.0×106C/m)0.1m)=8.987×109Nm2/C2(1800C/m2×106)=16.2×106N/C(1MN/C1×106N/C)

Further solve the above equation.

    |E|=16.2MN/C

Therefore, the electric field at 10.0cm is 16.2MN/C.

(b)

To determine

The electric field at 20.0cm, perpendicular to the filament.

(b)

Expert Solution
Check Mark

Answer to Problem 24P

The electric field at 20.0cm is 8.09MN/C.

Explanation of Solution

Conclusion:

Substitute 8.987×109Nm2/C2 for ke, 20.0cm for r and 90.0μC/m for λ in Equation (I) to calculate |E|.

    E=8.987×109Nm2/C2(2×(90.0μC/m)(1×106C/m1μC/m)20.0cm(1×102m1cm))=8.987×109Nm2/C2(2×(90.0×106C/m)0.2m)=8.987×109Nm2/C2(900C/m2×106)=8088300N/C×(1MN/C1×106N/C)

Further solve the above equation.

    |E|=8.09MN/C

Therefore, the electric field at 20.0cm is 8.09MN/C.

(c)

To determine

The electric field at 100cm, perpendicular to the filament

(c)

Expert Solution
Check Mark

Answer to Problem 24P

The electric field at 100cm is 1.62MN/C.

Explanation of Solution

Conclusion:

Substitute 8.987×109Nm2/C2 for ke, 100cm for r and 90.0μC/m for λ in Equation (I) to calculate |E|.

    E=8.987×109Nm2/C2(2×(90.0μC/m)(1×106C/m1μC/m)100cm(1×102m1cm))=8.987×109Nm2/C2(2×(90.0×106C/m)1m)=8.987×109Nm2/C2(180C/m2×106)=1617660N/C(1MN/C1×106N/C)

Further solve the above equation.

    |E|=1.62MN/C

Therefore, the electric field at 100cm is 1.62MN/C.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
23. What is the velocity of a beam of electrons that goes undeflected when passing through perpendicular electric and magnetic fields of magnitude 8.8 X 103 V/m and 7.5 X 10-3 T. respectively? What is the radius of the electron orbit if the electric field is turned off?
10. A light bulb emits 25.00 W of power as visible light. What are the average electric and magnetic fields from the light at a distance of 2.0 m?
9. Some 1800 years ago Roman soldiers effectively used slings as deadly weapons. The length of these slings averaged about 81 cm and the lead shot that they used weighed about 30 grams. If in the wind up to a release, the shot rotated around the Roman slinger with a period of .15 seconds. Find the maximum acceleration of the shot before being released in m/s^2 and report it to two significant figures.

Chapter 24 Solutions

Physics for Scientists and Engineers with Modern Physics, Technology Update

Ch. 24 - Prob. 9OQCh. 24 - Prob. 10OQCh. 24 - Prob. 11OQCh. 24 - Prob. 1CQCh. 24 - Prob. 2CQCh. 24 - Prob. 3CQCh. 24 - Prob. 4CQCh. 24 - Prob. 5CQCh. 24 - Prob. 6CQCh. 24 - Prob. 7CQCh. 24 - Prob. 8CQCh. 24 - Prob. 9CQCh. 24 - Prob. 10CQCh. 24 - Prob. 11CQCh. 24 - A flat surface of area 3.20 m2 is rotated in a...Ch. 24 - A vertical electric field of magnitude 2.00 104...Ch. 24 - Prob. 3PCh. 24 - Prob. 4PCh. 24 - Prob. 5PCh. 24 - A nonuniform electric field is given by the...Ch. 24 - An uncharged, nonconducting, hollow sphere of...Ch. 24 - Prob. 8PCh. 24 - Prob. 9PCh. 24 - Prob. 10PCh. 24 - Prob. 11PCh. 24 - A charge of 170 C is at the center of a cube of...Ch. 24 - Prob. 13PCh. 24 - A particle with charge of 12.0 C is placed at the...Ch. 24 - Prob. 15PCh. 24 - Prob. 16PCh. 24 - Prob. 17PCh. 24 - Find the net electric flux through (a) the closed...Ch. 24 - Prob. 19PCh. 24 - Prob. 20PCh. 24 - Prob. 21PCh. 24 - Prob. 22PCh. 24 - Prob. 23PCh. 24 - Prob. 24PCh. 24 - Prob. 25PCh. 24 - Determine the magnitude of the electric field at...Ch. 24 - A large, flat, horizontal sheet of charge has a...Ch. 24 - Prob. 28PCh. 24 - Prob. 29PCh. 24 - A nonconducting wall carries charge with a uniform...Ch. 24 - A uniformly charged, straight filament 7.00 m in...Ch. 24 - Prob. 32PCh. 24 - Consider a long, cylindrical charge distribution...Ch. 24 - A cylindrical shell of radius 7.00 cm and length...Ch. 24 - A solid sphere of radius 40.0 cm has a total...Ch. 24 - Prob. 36PCh. 24 - Prob. 37PCh. 24 - Why is the following situation impossible? A solid...Ch. 24 - A solid metallic sphere of radius a carries total...Ch. 24 - Prob. 40PCh. 24 - A very large, thin, flat plate of aluminum of area...Ch. 24 - Prob. 42PCh. 24 - Prob. 43PCh. 24 - Prob. 44PCh. 24 - A long, straight wire is surrounded by a hollow...Ch. 24 - Prob. 46PCh. 24 - Prob. 47PCh. 24 - Prob. 48APCh. 24 - Prob. 49APCh. 24 - Prob. 50APCh. 24 - Prob. 51APCh. 24 - Prob. 52APCh. 24 - Prob. 53APCh. 24 - Prob. 54APCh. 24 - Prob. 55APCh. 24 - Prob. 56APCh. 24 - Prob. 57APCh. 24 - An insulating solid sphere of radius a has a...Ch. 24 - Prob. 59APCh. 24 - Prob. 60APCh. 24 - Prob. 61CPCh. 24 - Prob. 62CPCh. 24 - Prob. 63CPCh. 24 - Prob. 64CPCh. 24 - Prob. 65CPCh. 24 - A solid insulating sphere of radius R has a...Ch. 24 - Prob. 67CPCh. 24 - Prob. 68CPCh. 24 - Prob. 69CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY