
Concept explainers
(a)
The charge on the insulating sphere.
(a)

Answer to Problem 57AP
The charge on the insulating sphere is
Explanation of Solution
Draw a Gaussian sphere from the centre of the insulating sphere such that the radius of the Gaussian sphere is between
Figure-(1)
Here,
Write the expression to calculate the electric field at the radial distance
Here,
Conclusion:
Convert the units of
Substitute
The electric field at
Therefore, the charge on the insulating sphere is
(b)
The net charge on the hollow
(b)

Answer to Problem 57AP
The net charge on the hollow conducting sphere is
Explanation of Solution
Draw a Gaussian sphere from the centre of the insulating sphere such that the radius of the Gaussian sphere is greater than
Figure-(2)
Here,
Write the expression to calculate the electric field at the radial distance
Here,
Write the expression to calculate the total charge.
Here,
Conclusion:
Convert the units of
Substitute
The electric field at
Substitute
Therefore, the net charge on the hollow conducting sphere is
(c)
The charge on the inner surface of the hollow conducting sphere.
(c)

Answer to Problem 57AP
The charge on the inner surface of the hollow conducting sphere is
Explanation of Solution
The insulating sphere induces a charge on the inner surface of the hollow conducting sphere that has the same magnitude but has an opposite sign.
Therefore, the charge on the inner surface of the hollow conducting sphere is
(d)
The charge on the outer surface of the hollow conducting sphere.
(d)

Answer to Problem 57AP
The charge on the outer surface of the hollow conducting sphere is
Explanation of Solution
The charge on the outer surface of the hollow conducting sphere is equal to the net charge on the hollow conducting sphere minus the charge on the inner surface of the hollow conducting sphere.
Write the expression to calculate the charge on the outer surface of the hollow conducting sphere.
Here,
Conclusion:
Substitute
Therefore, the charge on the outer surface of the hollow conducting sphere is
Want to see more full solutions like this?
Chapter 24 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- please help me solve this questions. show all calculations and a good graph too :)arrow_forwardWhat is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.) 5.0 με 4.0 με 2.0 με + 1.0 m 1.0 m -40 με 2.0 μCarrow_forwardWhat is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µCarrow_forward
- An ideal gas in a sealed container starts out at a pressure of 8900 N/m2 and a volume of 5.7 m3. If the gas expands to a volume of 6.3 m3 while the pressure is held constant (still at 8900 N/m2), how much work is done by the gas? Give your answer as the number of Joules.arrow_forwardThe outside temperature is 25 °C. A heat engine operates in the environment (Tc = 25 °C) at 50% efficiency. How hot does it need to get the high temperature up to in Celsius?arrow_forwardGas is compressed in a cylinder creating 31 Joules of work on the gas during the isothermal process. How much heat flows from the gas into the cylinder in Joules?arrow_forward
- The heat engine gives 1100 Joules of energy of high temperature from the burning gasoline by exhausting 750 Joules to low-temperature . What is the efficiency of this heat engine in a percentage?arrow_forwardL₁ D₁ L₂ D2 Aluminum has a resistivity of p = 2.65 × 10 8 2. m. An aluminum wire is L = 2.00 m long and has a circular cross section that is not constant. The diameter of the wire is D₁ = 0.17 mm for a length of L₁ = 0.500 m and a diameter of D2 = 0.24 mm for the rest of the length. a) What is the resistance of this wire? R = Hint A potential difference of AV = 1.40 V is applied across the wire. b) What is the magnitude of the current density in the thin part of the wire? Hint J1 = c) What is the magnitude of the current density in the thick part of the wire? J₂ = d) What is the magnitude of the electric field in the thin part of the wire? E1 = Hint e) What is the magnitude of the electric field in the thick part of the wire? E2 =arrow_forwardplease helparrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





