
Concept explainers
A balanced V load having a 10
a. the phase voltage of the generator.
b. the phase voltage of the load.
c. the phase current of the load.
d. the line current.

(a)
Phase voltage of generator.
Answer to Problem 1P
The phase voltage of generator is
Explanation of Solution
Given:
Resistance in each leg of
Line voltage of generator is
Concept used:
Write the expression for phase voltage of the generator.
Here,
Calculation:
Substitute
Conclusion:
Thus, phase voltage of generator is

(b)
Phase voltage of load.
Answer to Problem 1P
The value of Phase voltage of load is
Explanation of Solution
Calculation:
As each phase of
So value of Phase voltage of load is
Conclusion:
Thus, value of Phase voltage of load is

(c)
Phase current of load.
Answer to Problem 1P
The phase current of load is
Explanation of Solution
Concept used:
Write the expression for phase current of load.
Here,
Calculation:
Substitute
Conclusion:
Thus, phase current of load is

(d)
Value of line current.
Answer to Problem 1P
The value of line current is
Explanation of Solution
Calculation:
Value of line current is equal to value of phase current in
As load is
Conclusion:
Thus, value of line current is
Want to see more full solutions like this?
Chapter 24 Solutions
Introductory Circuit Analysis (13th Edition)
Additional Engineering Textbook Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Elementary Surveying: An Introduction To Geomatics (15th Edition)
HEAT+MASS TRANSFER:FUND.+APPL.
SURVEY OF OPERATING SYSTEMS
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
- Design a modulo-5 ripple (asynchronous) down-counter with D flip-flops and draw the corresponding logic circuit. (i) Build the state diagram and extract the state table(ii)Draw the logic circuit(iii) What is the maximum modulus of the counter?arrow_forwardDon't use ai to answer I will report you answerarrow_forward(i) The following two numbers are represented in unsigned binary: A= (10101)2 B= (10011)2 Represent these two numbers in signed 1's complement form and perform the following binary arithmetic operations using the 1's complement method. Use a total of 7 bits to represent both numbers and results including the sign bit. C = A + B; D=A-B.arrow_forward
- Don't use ai to answer I will report you answerarrow_forwardDon't use ai to answer I will report you answerarrow_forwardPlease write all the Formulas clearly for each case first, then solve the question by hand on paper and send a clear photo of the solution. Thanks a lot Power Electronics Q1) For the circuit shown in Fig (1). (a) Draw the output voltage and load current waveforms if the load is inductive. Explain the working of each device. (b) If Vs 220V, load resistance is 10 2 and output voltage frequency is 50Hz. 1. What is the rms value of the load voltage? 2. Obtain Fourier series expression of the output voltage up to 7th order harmonic. 3. Draw the frequency spectrum of the output voltage wave up to 7th order harmonic. T₁ D₁ D Vo T₁ D4 Fig 1 Load T₂ Darrow_forward
- Please write all the formulas clearly for each case first, then solve the question by hand on paper and send a clear photo of the solution. Thanks a lot 6 A three-phase transistor voltage-source inverter supplies a three-phase load, as shown in Fig.8.41. The load consists of star connected resistance of 10 in each phase. The inverter supply voltage is 200V d.c. and each inverter switch conducts for 120°. (a) Sketch the switching signals for the six transistors. (b) Sketch the line-to-neutral voltage for one complete cycle of the output voltage. (c) Sketch the line-to-line voltage for one complete cycle of the output voltage. (d) Calculate the rms values of the first five harmonics in the line- to-line output voltage, including the fundamental. (e) Calculate the rms values of the first five harmonics in the line- to-neutral output voltage, including the fundamental. [Ans: (d) VL-L=244.95 V, (e) Vph = 141.42 V] Q1 Q3 Q5 Vdc 200V b Q4 Q6 Q2 Fig.8.41. 120° conuction ww 102 w 1052 ww n 1052arrow_forwardPlease write all the Formulas clearly for each case first, then solve the question by hand on paper and send a clear photo of the solution. Thanks a lot Tent waveforms if the Q4) A three-phase inverter supplies a 3-phase load, as shown in Fig (2). The load consists of star connected resistance of 1002 in each phase. The inverter supply voltage is 200 V dc, and each inverter switch conducts 180°. (a) Sketch the switching signals for the six transistors. (b) Sketch the line-line voltage for one complete cycle of the output voltage (c) Sketch the line-line voltage for one complete cycle of the output voltage (d) Calculate the rms values of the first five harmonics in the line-line output voltage, including the fundamental. (e) Calculate the rms values of the first five harmonics in the line-neutral output voltage. including the fundamental.) Vac 200V Q1 Q3 Q5 B Q6 b Q2 ww 10Ω Fig2 3 1092 ww 1092arrow_forwardPlease write all the formulas clearly for each case first, then solve the question by hand on paper and send a clear photo of the solution. Thanks a lot A three-phase bridge-inverter is fed from a d.c. source of 200 V. If the load is star-connected of 10 02/phase pure resistance, determine the RMS load current, the required RMS current rating of the thyristors and the load power for (i) 120° firing, and (ii) 180° firing. [Ans (i) 120° firing IL (rms) = 8.16 A, IT(rms) = 9.8 A. Load power = 2000 W. (ii) 180° firing IL (rms) = 9.43 A, IT (rms) = 6.67 A. Load power = 2667 W.]arrow_forward
- SIM1 RESET O SIMULINO ARDUINO AREF 13 12 -11 www.arduino.cc blogembarcado.blogspot.com SIMULINO UNO BUZ1 BUZZER R1 R2 51.1 68.1 GAS1 MQ-2 GAS SENSOR MQ-2 TestPin www.TheEng Vcc OUT GND Can the expt help me write Arduino code for the Project sensou pas?arrow_forwardSolve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forward
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
