Concept explainers
The two charges in Figure P24.12 are separated by a distance d = 2.00 cm, and Q = +5.00 nC. Find (a) the electric potential at A, (b) the electric potential at B, and (c) the electric potential difference between B and A.
Figure P24.12
(a)
The electric potential at point
Answer to Problem 12P
The electric potential at point
Explanation of Solution
Given Info: Distance between point
The diagram for the given figure having point
Figure (1)
Write the expression to find out electric potential at point
Here,
Formula to calculate electric potential at point
Formula to calculate electric potential at point
Substitute
Write the formula of Pythagoras theorem to calculate diagonal of square.
Substitute
Substitute
Thus, electric potential at point
Conclusion:
Therefore, electric potential at point
(b)
The electric potential at point
Answer to Problem 12P
electric potential at point
Explanation of Solution
Write the expression to find out electric potential at point
Here,
Formula to calculate electric potential at point
Formula to calculate electric potential at point
Substitute
Here,
Substitute
Thus, electric potential at point B is
Conclusion:
Therefore, the electric potential at point B due to charge at point 1 and charge at point 2 is
(c)
The electric potential difference between
Answer to Problem 12P
Potential difference between point
Explanation of Solution
Write the expression to find out electric potential difference between
Here,
Substitute
Hence, electric potential difference between point
Conclusion:
Therefore, electric potential difference between point
Want to see more full solutions like this?
Chapter 24 Solutions
Physics for Scientists and Engineers with Modern Physics
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Fundamentals Of Thermodynamics
Organic Chemistry
Fundamentals of Anatomy & Physiology (11th Edition)
Microbiology Fundamentals: A Clinical Approach
- (a) A uniformly charged cylindrical shell with no end caps has total charge Q, radius R, and length h. Determine the electric potential at a point a distance d from the right end of the cylinder as shown in Figure P24.51. Suggestion: Use the result of Example 24.5 by treating the cylinder as a collection of ring charges. (b) What If? Use the result of Example 24.6 to solve the same problem for a solid cylinder. Figure P24.51arrow_forwardGiven two particles with 2.00-C charges as shown in Figure P20.9 and a particle with charge q = 1.28 1018 C at the origin, (a) what is the net force exerted by the two 2.00-C charges on the test charge q? (b) What is the electric field at the origin due to the two 2.00-C particles? (c) What is the electric potential at the origin due to the two 2.00-C particles? Figure P20.9arrow_forwardFIGURE P26.14 Problems 14, 15, and 16. Four charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = 2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy as their separations become infinite?arrow_forward
- Four particles are positioned on the rim of a circle. The charges on the particles are +0.500 C, +1.50 C, 1.00 C, and 0.500 C. If the electric potential at the center of the circle due to the +0.500 C charge alone is 4.50 104 V, what is the total electric potential at the center due to the four charges? (a) 18.0 104 V (b) 4.50 104 V (c) 0 (d) 4.50 104 V (e) 9.00 104 Varrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = 2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy as their separations become infinite? FIGURE P26.14 Problems 14, 15, and 16.arrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = +2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy?arrow_forward
- Two charged particles of equal magnitude are located along the y axis equal distances above and below the x axis as shown in Figure P24.14. (a) Plot a graph of the electric potential at points along the x axis over the interval 3a x 3a. You should plot the potential in units of keQ/a. (b) Let the charge of the particle located at y = a be negative. Plot the potential along the y axis over the interval 4a y 4a. Figure P24.14arrow_forwardTwo 5.00-nC charged particles are in a uniform electric field with a magnitude of 625 N/C. Each of the particles is moved from point A to point B along two different paths, labeled in Figure P26.65. a. Given the dimensions in the figure, what is the change in the electric potential experienced by the particle that is moved along path 1 (black)? b. What is the change in the electric potential experienced by the particle that is moved along path 2 (red)? c. Is there a path between the points A and B for which the change in the electric potential is different from your answers to parts (a) and (b)? Explain. FIGURE P26.65 Problems 65, 66, and 67.arrow_forwardTwo charged particles with q1 = 5.00 C and q2 = 3.00 C are placed at two vertices of an equilateral tetrahedron whose edges all have length s = 4.20 m (Fig. P26.37). Determine what charge q3 should be placed at the third vertex so that the total electric potential at the fourth vertex is 2.00 kV. FIGURE P26.37arrow_forward
- Figure P24.22 represents a graph of the electric potential in a region of space versus position x, where the electric field is parallel to the x axis. Draw a graph of the x component of the electric field versus x in this region. Figure P24.22arrow_forwardFigure P26.80 shows a wire with uniform charge per unit length = 2.25 nC/m comprised of two straight sections of length d = 75.0 cm and a semicircle with radius r = 25.0 cm. What is the electric potential at point P, the center of the semicircular portion of the wire? FIGURE P26.80arrow_forward(a) Find the electric potential, taking zero at infinity, at the upper right corner (the corner without a charge) of the rectangle in Figure P16.13. (b) Repeat if the 2.00-C charge is replaced with a charge of 2.00 C. Figure P16.13 Problems 13 and 14.arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning