![Physics for Scientists and Engineers with Modern Physics](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_largeCoverImage.gif)
Concept explainers
How much work is done (by a battery, generator, or some other source of potential difference) in moving Avogadro’s number of electrons from an initial point where the electric potential is 9.00 V to a point where the electric potential is −5.00 V? (The potential in each case is measured relative to a common reference point.)
![Check Mark](/static/check-mark.png)
The work done by the battery, generator, or some other source in moving Avogadro’s number of electron from an initial point to final point.
Answer to Problem 1P
The work done by the battery, generator, or some other source in moving Avogadro’s number of electron from an initial point to final point is
Explanation of Solution
Given information: Electric potential at initial point is
The expression for the work done is given as,
The value of potential difference is calculated as,
Substitute
The expression for the total charge is given as,
Here,
Substitute
Substitute
Conclusion:
Therefore, the work done by the battery, generator, or some other source in moving Avogadro’s number of electron from an initial point to final point is
Want to see more full solutions like this?
Chapter 24 Solutions
Physics for Scientists and Engineers with Modern Physics
Additional Science Textbook Solutions
Genetics: From Genes to Genomes
College Physics: A Strategic Approach (3rd Edition)
Fundamentals of Physics Extended
Genetics: Analysis and Principles
Chemistry: The Central Science (14th Edition)
- Help me make a visualize experimental setup using a word document. For the theory below.arrow_forwardHow to solve this, given answerarrow_forwardThree point-like charges are placed at the corners of a square as shown in the figure, 28.0 cm on each side. Find the minimum amount of work required by an external force to move the charge q1 to infinity. Let q1=-2.10 μC, q2=+2.40 μС, q3=+3.60 μC.arrow_forward
- A point charge of -4.00 nC is at the origin, and a second point charge of 6.00 nC is on the x axis at x= 0.820 mm . Find the magnitude and direction of the electric field at each of the following points on the x axis. x2 = 19.0 cmarrow_forwardFour point-like charges are placed as shown in the figure, three of them are at the corners and one at the center of a square, 36.0 cm on each side. What is the electric potential at the empty corner? Let q1=q3=+26.0 µС, q2=-28.0 μC, and q4=-48.0μc Varrow_forwardPLS HELparrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)