Concept explainers
Review. A block having mass m and charge + Q is connected to an insulating spring having a force constant k. The block lies on a frictionless, insulating, horizontal track, and the system is immersed in a uniform electric field of magnitude E directed as shown in Figure P24.6. The block is released from rest when the spring is unstretched (at x = 0). We wish to show that the ensuing motion of the block is simple harmonic. (a) Consider the system of the block, the spring, and the electric field. Is this system isolated or nonisolated? (b) What kinds of potential energy exist within this system? (c) Call the initial configuration of the system that existing just as the block is released from rest. The final configuration is when the block momentarily comes to rest again. What is the value of x when the block comes to rest momentarily? (d) At some value of x we will call x = x0, the block has zero net force on it. What analysis model describes the particle in this situation? (c) What is the value of x0? (f) Define a new coordinate system x′ such that x′ = x − x0. Show that x′ satisfies a differential equation for
Figure P24.6
(a)
Whether the system is isolated or non-isolated.
Answer to Problem 6P
The system is non-isolated.
Explanation of Solution
Given info: The mass of the block is
The system of the block with a spring is isolated system but when the system of the block with a spring is placed in a electric or magnetic field then it experiences an external force that makes the system non-isolated.
Conclusion:
Therefore, the system is non-isolated.
(b)
The kinds of potential energy exist in the system.
Answer to Problem 6P
The kinds of potential energy exist in the system are elastic potential energy and electrostatic potential energy.
Explanation of Solution
Given info: The mass of the block is
There are two kinds of potential energy exist in the system one is elastic potential energy and other is electrostatic potential energy.
The formula to calculate the elastic potential energy is,
Here,
The formula to calculate the electrostatic potential energy is,
Here,
The formula to calculate electrostatic force is,
Here,
Substitute
Conclusion:
Therefore, the kinds of potential energy exist in the system are elastic potential energy and electrostatic potential energy.
(c)
The value of
Answer to Problem 6P
The value of
Explanation of Solution
Given info: The mass of the block is
The formula to calculate the elastic potential energy is,
Here,
The formula to calculate the electrostatic potential energy is,
Here,
The formula to calculate electrostatic force is,
Here,
Substitute
Equate the formula (1) and (2) as,
Conclusion:
Therefore, the value of
(d)
The analysis model that describes particle in this situation.
Answer to Problem 6P
The analysis model that describes the particle in this situation is in equilibrium.
Explanation of Solution
Given info: The mass of the block is
The above statement is explained as the net force acting on the block is zero at some value of
Conclusion:
Therefore, the particle in this situation is in equilibrium.
(e)
The value of
Answer to Problem 6P
The value of
Explanation of Solution
Given info: The mass of the block is
The formula to calculate the spring force is,
Here,
The formula to calculate electric force is,
Here,
The net force is zero so it is expressed as,
Here,
Rearrange the above expression to find
Conclusion:
Therefore, the value of
(f)
To show: The coordinate
Answer to Problem 6P
Thus, the coordinate
Explanation of Solution
The mass of the block is
Given info:
From part (e), the value of
The formula to calculate the force equation is,
Here,
The formula to calculate the acceleration is,
Here,
The summation of the force is,
Here,
The new coordinate is,
Substitute
Substitute
This is the required equation of S.H.M.
Conclusion:
Therefore, the coordinate
(g)
The period of the simple harmonic motion.
Answer to Problem 6P
The period of the simple harmonic motion is
Explanation of Solution
Given info: The mass of the block is
From part (f), the equation for the S.H.M is,
The general equation of S.H.M is,
Here,
Compare the equation (4) and (5) as,
The formula to calculate the time period is,
Here,
Substitute
Conclusion:
Therefore, the period of the simple harmonic motion is
(h)
The time period depend on the electric field magnitude or not.
Answer to Problem 6P
The time period does not depend on the electric field magnitude.
Explanation of Solution
Given info: The mass of the block is
From part (g),the time period is,
In the above formula, there is no term that signifies electric field magnitude. So the time period is independent of electric field magnitude.
Conclusion:
Therefore, the time period does not depend on the electric field magnitude.
Want to see more full solutions like this?
Chapter 24 Solutions
Physics for Scientists and Engineers with Modern Physics
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Microbiology Fundamentals: A Clinical Approach
Fundamentals Of Thermodynamics
MARINE BIOLOGY
Campbell Essential Biology (7th Edition)
Cosmic Perspective Fundamentals
- In an isothermal process, you are told that heat is being added to the system. Which of the following is not true? (a) The pressure of the gas is decreasing. (b) Work is being done on the system. (c) The average kinetic energy of the particles is remaining constant. (d) The volume of the gas is increasing. (e) Work is being done by the system.arrow_forwardNo chatgpt pls will upvotearrow_forward8.114 CALC A Variable-Mass Raindrop. In a rocket-propul- sion problem the mass is variable. Another such problem is a rain- drop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is dp dv dm Fext = + dt dt dt = Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m kx, where k is a constant, and dm/dt = kv. This gives, since Fext = mg, dv mg = m + v(kv) dt Or, dividing by k, dv xgx + v² dt This is a differential equation that has a solution of the form v = at, where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero. (a) Using the proposed solution for v, find the acceleration a. (b) Find the distance the raindrop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of…arrow_forward
- 8.13 A 2.00-kg stone is sliding Figure E8.13 F (kN) to the right on a frictionless hori- zontal surface at 5.00 m/s when it is suddenly struck by an object that exerts a large horizontal force on it for a short period of 2.50 time. The graph in Fig. E8.13 shows the magnitude of this force as a function of time. (a) What impulse does this force exert on t (ms) 15.0 16.0 the stone? (b) Just after the force stops acting, find the magnitude and direction of the stone's velocity if the force acts (i) to the right or (ii) to the left.arrow_forwardPlease calculate the expectation value for E and the uncertainty in E for this wavefunction trapped in a simple harmonic oscillator potentialarrow_forwardIf an object that has a mass of 2m and moves with velocity v to the right collides with another mass of 1m that is moving with velocity v to the left, in which direction will the combined inelastic collision move?arrow_forward
- Please solve this questionarrow_forwardPlease solvearrow_forwardQuestions 68-70 Four hundred millilitres (mL) of a strong brine solution at room temperature was poured into a measuring cylinder (Figure 1). A piece of ice of mass 100 g was then gently placed in the brine solution and allowed to float freely (Figure 2). Changes in the surface level of the liquid in the cylinder were then observed until all the ice had melted. Assume that the densities of water, ice and the brine solution are 1000 kg m-3, 900 kg m3 and 1100 kg m3, respectively. 68 Figure 1 400 400 Figure 2 1m² = 1x10 mL After the ice was placed in the brine solution and before any of it had melted, the level of the brine solution was closest to 485 mL. B 490 mL. C 495 mL. Displaced volume by ice. D 500 mL. weight of ice 69 The level of the brine solution after all the ice had melted was A 490 mL B 495 mL D 1100kg/m² = 909 xious mis 70 Suppose water of the same volume and temperature had been used instead of the brine solution. In this case, by the time all the ice had melted, the…arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning