WILEY PLUS ACCESS CODE
11th Edition
ISBN: 9781119459163
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 10P
GO Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x = -50 cm and x = +50 cm. The charge densities on the planes are -50 nC/m2 and +25 nC/m2, respectively. What is the magnitude of the potential difference between the origin and the point on the x axis at x = +80 cm? (Hint: Use Gauss’ law.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x = -51 cm and x = +51 cm. The
charge densities on the planes are -42 nC/m2 and +23 nC/m2, respectively. What is the magnitude of the potential difference
between the origin and the point on the x axis at x = +90 cm? (Hint: Use Gauss' law for planar symmetry to determine the electric
field in each region of space.)
Number
i
Units
Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x = -46 cm and x = +46 cm. The charge densities on the planes are -42 nC/m2 and +20 nC/m2, respectively. What is the magnitude of the potential difference between the origin and the point on the x axis at x = +77 cm? (Hint: Use Gauss' law for planar symmetry to determine the electric field in each region of space.)
A solid conducting sphere of radius ra is placed concentrically inside a conducting spherical shell of inner radius rb1 and outer radius rb2. The inner sphere carries a charge Q while the outer sphere does not carry any net charge. The potential for rb1 < r < rb2 is
Chapter 24 Solutions
WILEY PLUS ACCESS CODE
Ch. 24 - Figure 24-24 shows eight particles that form a...Ch. 24 - Figure 24-25 shows three sets of cross sections of...Ch. 24 - Figure 24-26 shows four pairs of charged...Ch. 24 - Figure 24-27 gives the electric potential V as a...Ch. 24 - Figure 24-28 shows three paths along which we can...Ch. 24 - Figure 24-29 shows four arrangement? of charged...Ch. 24 - Figure 24-30 shows a system of three charged...Ch. 24 - In the situation of Question 7, is the work done...Ch. 24 - Figure 24-26 shows four pairs of charged particles...Ch. 24 - a In Fig. 24-31a, what is the potential at point P...
Ch. 24 - Figure 24-32 shows a thin, uniformly charged rod...Ch. 24 - In Fig. 24-33, a particle is to be released at...Ch. 24 - SSM A particular 12 V car battery can send a total...Ch. 24 - The electric potential difference between the...Ch. 24 - Suppose that in a lightning flash the potential...Ch. 24 - Two large, parallel, conducting plates are 12 cm...Ch. 24 - SSM An infinite nonconducting sheet has a surface...Ch. 24 - When an electron moves from A to B along an...Ch. 24 - The electric field in a region of space has the...Ch. 24 - A graph of the x component of the electric field...Ch. 24 - Prob. 9PCh. 24 - GO Two uniformly charged, infinite, nonconducting...Ch. 24 - A nonconducting sphere has radius R = 2.31 cm and...Ch. 24 - As a space shuttle moves through the dilute...Ch. 24 - What are a the change and b the charge density on...Ch. 24 - Consider a particle with charge q = 1.0 C, point A...Ch. 24 - SSM ILW A spherical drop of water carrying a...Ch. 24 - GO Figure 24-37 shows a rectangular array of...Ch. 24 - GO In Fig.24-33, what is the net electric...Ch. 24 - GO Two charged particles are shown in Fig. 24-39a....Ch. 24 - In Fig. 24-40, particles with the charges q1 = 5e...Ch. 24 - Two particles, of charges q1 and q2, are separated...Ch. 24 - ILW The ammonia molecule NH3 has a permanent...Ch. 24 - In Fig. 24-41a, a particle of elementary charge e...Ch. 24 - a Figure 24-42a shows a nonconducting rod of...Ch. 24 - In Fig. 21-43, a plastic rod having a uniformly...Ch. 24 - A plastic rod has been bent into a circle of...Ch. 24 - GO Figure 24-45 shows a thin rod with a uniform...Ch. 24 - In Fig. 24-46, three thin plastic rods form...Ch. 24 - GO Figure 24-47 shows a thin plastic rod of length...Ch. 24 - In Fig. 24-48, what is the net electric potential...Ch. 24 - GO The smiling face of Fig. 24-49 consists of...Ch. 24 - SSM WWW A plastic disk of radius R = 64.0 cm is...Ch. 24 - GO A non uniform linear charge distribution given...Ch. 24 - GO The thin plastic rod shown in Fig. 24-47 has...Ch. 24 - Two large parallel metal plates are 1.5 cm apart...Ch. 24 - The electric potential al points in an xy plane is...Ch. 24 - The electric potential V in the space between two...Ch. 24 - SSM What is the magnitude of the electric field at...Ch. 24 - Figure 24-47 shows a thin plastic rod of length L...Ch. 24 - An electron is placed in an xy plane where I he...Ch. 24 - GO The thin plastic rod of length L = 10.0 cm in...Ch. 24 - A particle of charge 7.5 C is released from rest...Ch. 24 - a What is the electric potential energy of two...Ch. 24 - How much work is required to set up the...Ch. 24 - In Fig. 24-53, seven charged particles are fixed...Ch. 24 - ILW A particle of charge q is fixed at point P,...Ch. 24 - A charge of 9.0 nC is uniformly distributed around...Ch. 24 - GO What is the escape speed for an electron...Ch. 24 - A thin, spherical conducting shell of radius R is...Ch. 24 - GO Two electrons are fixed 2.0 cm apart. Another...Ch. 24 - In Fig. 24-54, how much work must we do to bring a...Ch. 24 - GO In the rectangle of Fig. 24-55, the sides have...Ch. 24 - Figure 24-56a shows an electron moving along an...Ch. 24 - Two tiny metal sphere? A and B, mass mA = 5.00 g...Ch. 24 - Prob. 54PCh. 24 - An electron is projected with an initial speed of...Ch. 24 - Particle 1 with a charge of 5.0 C and particle 2...Ch. 24 - SSM Identical 50 C charges are fixed or an x axis...Ch. 24 - GO Proton in a well. Figure 24-59 shows electric...Ch. 24 - In Fig. 24-60, a charged particle either an...Ch. 24 - In Fig. 24-61a, we move an electron from an...Ch. 24 - Suppose N electrons can be placed in either of two...Ch. 24 - Sphere 1 with radius R1 has positive charge q....Ch. 24 - SSM WWW Two metal spheres, each of radius 3.0 cm,...Ch. 24 - A hollow metal sphere has a potential of 400 V...Ch. 24 - SSM What is the excess charge on a conducting...Ch. 24 - Two isolated, concentric, conducting spherical...Ch. 24 - A metal sphere of radius 15 cm has a net charge of...Ch. 24 - Here are the charges and coordinates of two...Ch. 24 - SSM A long, solid, conducting cylinder has a...Ch. 24 - The chocolate crumb mystery. This story begins...Ch. 24 - SSM Starting from Eq. 24-30, derive an expression...Ch. 24 - The magnitude E of an electric field depends on...Ch. 24 - a If an isolated conducting sphere 10 cm in radius...Ch. 24 - Three particles, charge q1 = 10 C, q2 = 20 C, and...Ch. 24 - An electric field of approximately 100 V/m is...Ch. 24 - A Gaussian sphere of radius 4.00 cm is centered or...Ch. 24 - In a Millikan oil-drop experiment Module 22-6, a...Ch. 24 - Figure 24-63 shows three circular, nonconducting...Ch. 24 - An electron is released from rest on the axis of...Ch. 24 - Figure 24-64 shows a ring of outer radius R = 13.0...Ch. 24 - GO Electron in a well. Figure 24-65 shows electric...Ch. 24 - a If Earth had a uniform surface charge density of...Ch. 24 - Prob. 83PCh. 24 - A solid conducting sphere of radius 3.0 cm has a...Ch. 24 - In Fig. 24-67, we move a particle of charge 2e in...Ch. 24 - Figure 24-68 shows a hemisphere with a charge of...Ch. 24 - SSM Three 0.12 C charges form an equilateral...Ch. 24 - Two charges q = 2.0 C are fixed a distance d = 2.0...Ch. 24 - Initially two electrons are fixed in place with a...Ch. 24 - A particle of positive charge Q is fixed at point...Ch. 24 - Two charged, parallel, flat conducting surfaces...Ch. 24 - In Fig. 24-70, point P is at the center of the...Ch. 24 - SSM A uniform charge of 16.0 C is on a thin...Ch. 24 - Consider a particle with charge q = 150 108 C,...Ch. 24 - Prob. 95PCh. 24 - A charge q is distributed uniformly throughout a...Ch. 24 - SSM A solid copper sphere whose radius is 1.0 cm...Ch. 24 - In Fig. 24-71, a metal sphere with charge q = 5.00...Ch. 24 - a Using Eq. 24-32, show that the electric...Ch. 24 - An alpha particle which has two protons is seat...Ch. 24 - In the quark model of fundamental particles, a...Ch. 24 - A charge of 1.50 108 C lies on an isolated metal...Ch. 24 - In Fig. 24-72, two particles of charges q1 and q2...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. What would you be most likely to find ...
Cosmic Perspective Fundamentals
6.1 State the number of electrons that be must be lost by atoms of each of the following to achieve a stable el...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
37. The temperature of an aluminum disk is increased by 120°C. By what percentage does its volume increase?
College Physics: A Strategic Approach (3rd Edition)
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
What is the inducer for the lac operon?
Microbiology: Principles and Explorations
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle with charge q on the negative x axis and a second particle with charge 2q on the positive x axis are each a distance d from the origin. Where should a third particle with charge 3q be placed so that the magnitude of the electric field at the origin is zero?arrow_forwardIn the figure how much work must we do to bring a particle, of charge Q = +16e and initially at rest, along the dashed line from infinity to the indicated point near two fixed particles of charges q1 = +18e and q2 = –q1/2? Distance d = 2.90 cm, θ1 = 42°, and θ2 = 59°.arrow_forwardTwo long concentric cylindrical shells of conductors carry equal and opposite charges. The inner shell has a radius R, and a charge + Q; the outer one has a radius R2 and a charge – Q. The length of the cylinders is L. (a) Find the electric field in the region Rịarrow_forwardAn electron is released from rest from the surface of a large, uniformly charged, nonconducting plate. µC The surface charge on the plate is: o = -4.0 Once released, what is the speed of the electron when it reaches a distance of 0.3 cm away from the plate? (Ignore gravity). Express your answer to the nearest km/s.arrow_forwardAn electron is released from rest on the axis of an electric dipole that has charge e and charge separation d= 20 pm and that is fixed in place.The release point is on the positive side of the dipole, at distance 7.0d from the dipole center. What is the electron’s speed when it reaches a point 5.0d from the dipole center?arrow_forwardProblem 13: Each plate of a parallel-plate capacitor has an area of A = 0.61 m2. The plate separation is 3.0 mm, and one of these plates is shown in the figure. It carries a charge of Q = 2.9 μC, which is concentrated on its inner surface. Imagine a cylindrical Gaussian surface, of radius r = 0.012 m, whose axis is perpendicular to the plates. One end of the cylinder is inside the plate shown and the other end is located between the plates. Both ends are parallel to the plates. Part (a) What is the flux through surface 1 Φ1, in newton meters squared per coulomb? Part (b) What is the flux through surface 2 (the outside of the cylinder not including the ends), in newton meters squared per coulomb? Part (c) What is the flux through surface 3 Φ3, in newton meters squared per coulomb? Part (d) Using all of your results, input an expression for the field within the capacitor E, in terms of the quantities given in the problem.arrow_forwardA charge of-9.0 nC is uniformly distributed around a thin plastic ring lying in a yz plane with the ring center at the origin.A -6.0 pC particle is located on the x axis at x = 3.0 m. For a ring radius of 1.5 m, how much work must an external force do on the particle to move it to the origin?arrow_forwardCharge Q = 4.00 μC is distributed uniformly over the volume of an insulating sphere that has radius R = 11.0 cm. A small sphere with charge q =+ 3.00 μC and mass 6.00×10^−5kg is projected toward the center of the large sphere from an initial large distance. The large sphere is held at a fixed position and the small sphere can be treated as a point charge. What minimum speed must the small sphere have in order to come within 8.00 cm of the surface of the large sphere?arrow_forwardIdentical point charges (+50 µC) are placed at the corners of a square with sides of 2.0-m length. How much external energy is required to bring a fifth identical charge from infinity to the geometric center of the square? Answer is 64J please explain how?arrow_forwardTwo parallel plates, each charged equally and oppositely to the other, are separated by 5.1000 cm. A proton is let go from rest at the positive plate's surface and, at the same time, an electron is let go from rest at the negative plate's surface. What is the distance between the negative plate and the point where the proton and the electron go by each other? Note: unlike most questions, this one will need your answer correct to 5 significant digits. Make sure you enter that many into the box below.arrow_forwardA ring of radius 4 cm is in the yz plane with center at the origin. The ring carries a uniform charge of 8 nC. A small particle of mass m=6mg and charge q0=5nC is placed at x=3cm and released. Find the speed of particle when it is at great distance from the ring?arrow_forwardYour answer is partially correct. Try again. A charge of -8.5 nC is uniformly distributed around a thin plastic ring lying in a yz plane with the ring center at the origin. A -5.0 pC point charge is located on the x axis at x = 3.8 m. For a ring radius of 1.2 m, how much work must an external force do on the point charge to move it to the origin? Number 0.00000008728 Units the tolerance is +/-5%arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY