WILEY PLUS ACCESS CODE
11th Edition
ISBN: 9781119459163
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 55P
An electron is projected with an initial speed of 3.2 × 105 m/s directly toward a proton that is fixed in place. If the electron is initially a great distance from the proton, at what distance from the proton is the speed of the electron instantaneously equal to twice the initial value?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron is projected with an initial speed of 3.2 * 10^5 m/s directly toward a proton that is fixed in place. If the electron is initially a great distance from the proton, at what distance from the proton is the speed of the electron instantaneously equal to twice the initial value?
1) A proton (p) and electron (e-) are released when they are 4 Å (4 Angstroms). Find the initial accelerations of each particle, from one of the selections below. a) a(p) = 8.63 x 1017 m/s2, a(e-) = 1.58 x 1021 m/s2;
b) a(p) = 3.4 x 1018 m/s2, a(e-) = 6.3 x 1021 m/s2;
c) a(p) = 4.315 x 1016 m/s2, a(e-) = 7.9 x 1020 m/s2;
d) a(p) = 3.45 x 1018 m/s2, a(e-) = 6.32 x 1021 m/s2.
1) Two small spheres are placed a distance 20 cm apart and have equal charge. How many excess electrons must be placed on each sphere if the magnitude of the Coulomb repulsive force is F = 3.33 x 10-21 N? a) 2 x 103;
b) 350;
c) 760;
d) 1.2 x 103.
3)Three individual point charges are placed at the following positions in the x-y plane: Q3 = 5.0 nC at (x, y) = (0,0);
Q2 = -3.0 nC at (x, y) = (4 cm, 0);
and Q1 = ? nC at (x, y) = (2 cm,0);
What is the magnitude, and sign, of charge Q1 such that the net force exerted on charge Q3, exerted by charges Q1 and Q2, is zero? a) Q1 = + 0.5 nC;
b) Q1 = - 0.25 nC;
c) Q1 = +…
This transmission electron microscope (TEM) image of coronavirus can be taken using a beam of
electrons accelerated from rest through a potential difference of 25 kV. What is the final speed of
the electrons?
Provide the answer: .
x 108 m/s
Chapter 24 Solutions
WILEY PLUS ACCESS CODE
Ch. 24 - Figure 24-24 shows eight particles that form a...Ch. 24 - Figure 24-25 shows three sets of cross sections of...Ch. 24 - Figure 24-26 shows four pairs of charged...Ch. 24 - Figure 24-27 gives the electric potential V as a...Ch. 24 - Figure 24-28 shows three paths along which we can...Ch. 24 - Figure 24-29 shows four arrangement? of charged...Ch. 24 - Figure 24-30 shows a system of three charged...Ch. 24 - In the situation of Question 7, is the work done...Ch. 24 - Figure 24-26 shows four pairs of charged particles...Ch. 24 - a In Fig. 24-31a, what is the potential at point P...
Ch. 24 - Figure 24-32 shows a thin, uniformly charged rod...Ch. 24 - In Fig. 24-33, a particle is to be released at...Ch. 24 - SSM A particular 12 V car battery can send a total...Ch. 24 - The electric potential difference between the...Ch. 24 - Suppose that in a lightning flash the potential...Ch. 24 - Two large, parallel, conducting plates are 12 cm...Ch. 24 - SSM An infinite nonconducting sheet has a surface...Ch. 24 - When an electron moves from A to B along an...Ch. 24 - The electric field in a region of space has the...Ch. 24 - A graph of the x component of the electric field...Ch. 24 - Prob. 9PCh. 24 - GO Two uniformly charged, infinite, nonconducting...Ch. 24 - A nonconducting sphere has radius R = 2.31 cm and...Ch. 24 - As a space shuttle moves through the dilute...Ch. 24 - What are a the change and b the charge density on...Ch. 24 - Consider a particle with charge q = 1.0 C, point A...Ch. 24 - SSM ILW A spherical drop of water carrying a...Ch. 24 - GO Figure 24-37 shows a rectangular array of...Ch. 24 - GO In Fig.24-33, what is the net electric...Ch. 24 - GO Two charged particles are shown in Fig. 24-39a....Ch. 24 - In Fig. 24-40, particles with the charges q1 = 5e...Ch. 24 - Two particles, of charges q1 and q2, are separated...Ch. 24 - ILW The ammonia molecule NH3 has a permanent...Ch. 24 - In Fig. 24-41a, a particle of elementary charge e...Ch. 24 - a Figure 24-42a shows a nonconducting rod of...Ch. 24 - In Fig. 21-43, a plastic rod having a uniformly...Ch. 24 - A plastic rod has been bent into a circle of...Ch. 24 - GO Figure 24-45 shows a thin rod with a uniform...Ch. 24 - In Fig. 24-46, three thin plastic rods form...Ch. 24 - GO Figure 24-47 shows a thin plastic rod of length...Ch. 24 - In Fig. 24-48, what is the net electric potential...Ch. 24 - GO The smiling face of Fig. 24-49 consists of...Ch. 24 - SSM WWW A plastic disk of radius R = 64.0 cm is...Ch. 24 - GO A non uniform linear charge distribution given...Ch. 24 - GO The thin plastic rod shown in Fig. 24-47 has...Ch. 24 - Two large parallel metal plates are 1.5 cm apart...Ch. 24 - The electric potential al points in an xy plane is...Ch. 24 - The electric potential V in the space between two...Ch. 24 - SSM What is the magnitude of the electric field at...Ch. 24 - Figure 24-47 shows a thin plastic rod of length L...Ch. 24 - An electron is placed in an xy plane where I he...Ch. 24 - GO The thin plastic rod of length L = 10.0 cm in...Ch. 24 - A particle of charge 7.5 C is released from rest...Ch. 24 - a What is the electric potential energy of two...Ch. 24 - How much work is required to set up the...Ch. 24 - In Fig. 24-53, seven charged particles are fixed...Ch. 24 - ILW A particle of charge q is fixed at point P,...Ch. 24 - A charge of 9.0 nC is uniformly distributed around...Ch. 24 - GO What is the escape speed for an electron...Ch. 24 - A thin, spherical conducting shell of radius R is...Ch. 24 - GO Two electrons are fixed 2.0 cm apart. Another...Ch. 24 - In Fig. 24-54, how much work must we do to bring a...Ch. 24 - GO In the rectangle of Fig. 24-55, the sides have...Ch. 24 - Figure 24-56a shows an electron moving along an...Ch. 24 - Two tiny metal sphere? A and B, mass mA = 5.00 g...Ch. 24 - Prob. 54PCh. 24 - An electron is projected with an initial speed of...Ch. 24 - Particle 1 with a charge of 5.0 C and particle 2...Ch. 24 - SSM Identical 50 C charges are fixed or an x axis...Ch. 24 - GO Proton in a well. Figure 24-59 shows electric...Ch. 24 - In Fig. 24-60, a charged particle either an...Ch. 24 - In Fig. 24-61a, we move an electron from an...Ch. 24 - Suppose N electrons can be placed in either of two...Ch. 24 - Sphere 1 with radius R1 has positive charge q....Ch. 24 - SSM WWW Two metal spheres, each of radius 3.0 cm,...Ch. 24 - A hollow metal sphere has a potential of 400 V...Ch. 24 - SSM What is the excess charge on a conducting...Ch. 24 - Two isolated, concentric, conducting spherical...Ch. 24 - A metal sphere of radius 15 cm has a net charge of...Ch. 24 - Here are the charges and coordinates of two...Ch. 24 - SSM A long, solid, conducting cylinder has a...Ch. 24 - The chocolate crumb mystery. This story begins...Ch. 24 - SSM Starting from Eq. 24-30, derive an expression...Ch. 24 - The magnitude E of an electric field depends on...Ch. 24 - a If an isolated conducting sphere 10 cm in radius...Ch. 24 - Three particles, charge q1 = 10 C, q2 = 20 C, and...Ch. 24 - An electric field of approximately 100 V/m is...Ch. 24 - A Gaussian sphere of radius 4.00 cm is centered or...Ch. 24 - In a Millikan oil-drop experiment Module 22-6, a...Ch. 24 - Figure 24-63 shows three circular, nonconducting...Ch. 24 - An electron is released from rest on the axis of...Ch. 24 - Figure 24-64 shows a ring of outer radius R = 13.0...Ch. 24 - GO Electron in a well. Figure 24-65 shows electric...Ch. 24 - a If Earth had a uniform surface charge density of...Ch. 24 - Prob. 83PCh. 24 - A solid conducting sphere of radius 3.0 cm has a...Ch. 24 - In Fig. 24-67, we move a particle of charge 2e in...Ch. 24 - Figure 24-68 shows a hemisphere with a charge of...Ch. 24 - SSM Three 0.12 C charges form an equilateral...Ch. 24 - Two charges q = 2.0 C are fixed a distance d = 2.0...Ch. 24 - Initially two electrons are fixed in place with a...Ch. 24 - A particle of positive charge Q is fixed at point...Ch. 24 - Two charged, parallel, flat conducting surfaces...Ch. 24 - In Fig. 24-70, point P is at the center of the...Ch. 24 - SSM A uniform charge of 16.0 C is on a thin...Ch. 24 - Consider a particle with charge q = 150 108 C,...Ch. 24 - Prob. 95PCh. 24 - A charge q is distributed uniformly throughout a...Ch. 24 - SSM A solid copper sphere whose radius is 1.0 cm...Ch. 24 - In Fig. 24-71, a metal sphere with charge q = 5.00...Ch. 24 - a Using Eq. 24-32, show that the electric...Ch. 24 - An alpha particle which has two protons is seat...Ch. 24 - In the quark model of fundamental particles, a...Ch. 24 - A charge of 1.50 108 C lies on an isolated metal...Ch. 24 - In Fig. 24-72, two particles of charges q1 and q2...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Air in a car tire is initially at 10F and 30psia . After the car is driven awhile, the temperature rises to 50F...
Fundamentals Of Thermodynamics
Along some shorelines, incoming waves cause the water to simply rise and fall rather than form a surf zone. Wha...
Applications and Investigations in Earth Science (9th Edition)
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
Foods packed in plastic for microwaving are a. dehydrated. b. freeze-dried. c. packaged aseptically. d. commerc...
Microbiology: An Introduction
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) At what speed will a proton move in a circular path of the same radius as the electron in the previous exercise? (b) What would the radius of the path be if tlie proton had the same speed as the election? (c) What would the radius be if the proton had tlie same kinetic energy' as die electron? (d) The same momentum?arrow_forwardA hydrogen atom contains a single electron that moves in a circular orbit about a single proton. Assume the proton is stationary, and the electron has a speed of 7.6 105 m/s. Find the radius between the stationary proton and the electron orbit within the hydrogen atom.arrow_forwardA proton is accelerated through a potential difference of 6 MV. (megavolts) from rest. Calc. the final velocity in m/s (a) 1.4 X 10' (b) 2.4 X 10' (c) 3.4 X 10' (d) 4.4 X 10'.arrow_forward
- If a proton and electron are released when they are 2.0 m apart, find the initial acceleration of electron (in m/s2) The answer (in fundamental SI unit) isarrow_forwardIf a proton and an electron are released when they are 2.50×10−10 m apart (typical atomic distances), find the initial acceleration of each of them. Express your answer in meters per second squared.arrow_forwardCalculate the speed of (a) an electron and (b) a proton with a kinetic energy of 1.00 electron volt (eV). (c) Calculate the average translational kinetic energy in eV of a 3.00 x 102-K ideal gas particle. (Recall from Topic 10 that mu = kT.)arrow_forward
- A proton (m=1.67×10-27kg, q=+1.60×10-19C) is moving towards a stationary point charge (Q = +1.50 μC). The proton is initially has a speed of vi=2.50×106m/s, and is a distance of 6.50 meters away from the point charge.(a)How fast is the proton moving (in m/s) when it is 3.50 meters away from thepoint charge? Use conservation of energy.(b)How far is the proton from the point charge (in cm) when it comes to a stop?arrow_forwardIn a television picture tube, electrons strike the screen after being accelerated from rest through a potential difference of 17000 V. The speeds of the electrons are quite large, and for accurate calculations of the speeds, the effects of special relativity must be taken into account. Ignoring such effects, find the electron speed just before the electron strikes the screen.arrow_forwardThe phenomenon where electrons are emitted from a material when it absorbs electromagnetic waves is called the photoelectric effect. Visible light shines energy on a metal sheet with energy enough for the metal sheet to emit electrons. In order to measure the energy of these electrons, another negatively charged plate (-24.8 V with respect to the metal sheet) is placed in the path of the electrons. The electrons slow down upon contact with the negatively charged plate and stop. What is the initial speed of these electrons?arrow_forward
- A negative hydrogen ion (1 proton and 2 electrons) at rest is at a 0V potential.The hydrogen ion is placed in an electrostatic accelerator with variable potential. The central terminal of the accelerator has a potential of 2 million volts. Determine the kinetic energy acquired by the ion when it is subjected to this potential difference. (Express the results in joules and electron volts)arrow_forwardTwo charged, parallel, flat conducting surfaces are spaced d = 1.1 cm apart and produce a potential difference ΔV = 715 V between them. An electron is projected from one surface directly toward the second. What is the initial speed of the electron if its comes to rest just at the second surface?arrow_forwardThe figure shows an arrangement of two -4.5 nC charged particles, each separated by 5.0 mm from a proton. The two negatively charged particles are held fixed at their locations, and the proton is given an initial velocity as shown. What minimum speed v must the proton have to totally escape from the negatively charged particles? The proton's mass is 1.67×10-27 kg. 5.0 mm 5.0 mm Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY