WILEY PLUS ACCESS CODE
11th Edition
ISBN: 9781119459163
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 30P
GO The smiling face of Fig. 24-49 consists of three items:
1. a thin rod of charge − 3.0µ
2. a second thin rod of charge 2.0 µ
3. an electric dipole with a dipole moment that is perpendicular to a radial line and has a magnitude of 1.28 × 10-21 C · m.
What is the net electric potential at the center?
Figure 24-49 Problem 30.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The smiling face of the figure consists of three items:
1. a thin rod of charge -1.50 µC that forms a full circle of radius 3.00 cm;
2. a second thin rod of charge 1.00 µC that forms a circular arc of radius 2.00 cm, subtending an angle of 90° about the center of the full
circle;
3. an electric dipole with a dipole moment that is perpendicular to a radial line and has magnitude 1.10 × 10-21 C-m. What is the net
electric potential at the center?
Number i
Units
*T*
The dipole moment of the water molecule (H,O) is
6.17 x 10-30 C.m. Consider a water molecule located at the
origin whose dipole moment p points in the positive x direction. A
chlorine ion (CI
x = 3.00 x 10-9 meters. Assume that this x value is much
larger than the separation d between the charges in the dipole,
so that the approximate expression for the electric field along the
dipole axis can be used.
Part A
of charge -1.60 x 10-19 C, is located at
Find the magnitude of the electric force, ignoring the sign, that the water molecule exerts on the chlorine ion.
• View Available Hint(s)
6.57 • 1012
N
What electric field strength and direction will allow the proton to pass through
this region of space without being deflected? Assume that B = [-0.020 T]ê and
[3.0 x 107 m/s]ŷ
Chapter 24 Solutions
WILEY PLUS ACCESS CODE
Ch. 24 - Figure 24-24 shows eight particles that form a...Ch. 24 - Figure 24-25 shows three sets of cross sections of...Ch. 24 - Figure 24-26 shows four pairs of charged...Ch. 24 - Figure 24-27 gives the electric potential V as a...Ch. 24 - Figure 24-28 shows three paths along which we can...Ch. 24 - Figure 24-29 shows four arrangement? of charged...Ch. 24 - Figure 24-30 shows a system of three charged...Ch. 24 - In the situation of Question 7, is the work done...Ch. 24 - Figure 24-26 shows four pairs of charged particles...Ch. 24 - a In Fig. 24-31a, what is the potential at point P...
Ch. 24 - Figure 24-32 shows a thin, uniformly charged rod...Ch. 24 - In Fig. 24-33, a particle is to be released at...Ch. 24 - SSM A particular 12 V car battery can send a total...Ch. 24 - The electric potential difference between the...Ch. 24 - Suppose that in a lightning flash the potential...Ch. 24 - Two large, parallel, conducting plates are 12 cm...Ch. 24 - SSM An infinite nonconducting sheet has a surface...Ch. 24 - When an electron moves from A to B along an...Ch. 24 - The electric field in a region of space has the...Ch. 24 - A graph of the x component of the electric field...Ch. 24 - Prob. 9PCh. 24 - GO Two uniformly charged, infinite, nonconducting...Ch. 24 - A nonconducting sphere has radius R = 2.31 cm and...Ch. 24 - As a space shuttle moves through the dilute...Ch. 24 - What are a the change and b the charge density on...Ch. 24 - Consider a particle with charge q = 1.0 C, point A...Ch. 24 - SSM ILW A spherical drop of water carrying a...Ch. 24 - GO Figure 24-37 shows a rectangular array of...Ch. 24 - GO In Fig.24-33, what is the net electric...Ch. 24 - GO Two charged particles are shown in Fig. 24-39a....Ch. 24 - In Fig. 24-40, particles with the charges q1 = 5e...Ch. 24 - Two particles, of charges q1 and q2, are separated...Ch. 24 - ILW The ammonia molecule NH3 has a permanent...Ch. 24 - In Fig. 24-41a, a particle of elementary charge e...Ch. 24 - a Figure 24-42a shows a nonconducting rod of...Ch. 24 - In Fig. 21-43, a plastic rod having a uniformly...Ch. 24 - A plastic rod has been bent into a circle of...Ch. 24 - GO Figure 24-45 shows a thin rod with a uniform...Ch. 24 - In Fig. 24-46, three thin plastic rods form...Ch. 24 - GO Figure 24-47 shows a thin plastic rod of length...Ch. 24 - In Fig. 24-48, what is the net electric potential...Ch. 24 - GO The smiling face of Fig. 24-49 consists of...Ch. 24 - SSM WWW A plastic disk of radius R = 64.0 cm is...Ch. 24 - GO A non uniform linear charge distribution given...Ch. 24 - GO The thin plastic rod shown in Fig. 24-47 has...Ch. 24 - Two large parallel metal plates are 1.5 cm apart...Ch. 24 - The electric potential al points in an xy plane is...Ch. 24 - The electric potential V in the space between two...Ch. 24 - SSM What is the magnitude of the electric field at...Ch. 24 - Figure 24-47 shows a thin plastic rod of length L...Ch. 24 - An electron is placed in an xy plane where I he...Ch. 24 - GO The thin plastic rod of length L = 10.0 cm in...Ch. 24 - A particle of charge 7.5 C is released from rest...Ch. 24 - a What is the electric potential energy of two...Ch. 24 - How much work is required to set up the...Ch. 24 - In Fig. 24-53, seven charged particles are fixed...Ch. 24 - ILW A particle of charge q is fixed at point P,...Ch. 24 - A charge of 9.0 nC is uniformly distributed around...Ch. 24 - GO What is the escape speed for an electron...Ch. 24 - A thin, spherical conducting shell of radius R is...Ch. 24 - GO Two electrons are fixed 2.0 cm apart. Another...Ch. 24 - In Fig. 24-54, how much work must we do to bring a...Ch. 24 - GO In the rectangle of Fig. 24-55, the sides have...Ch. 24 - Figure 24-56a shows an electron moving along an...Ch. 24 - Two tiny metal sphere? A and B, mass mA = 5.00 g...Ch. 24 - Prob. 54PCh. 24 - An electron is projected with an initial speed of...Ch. 24 - Particle 1 with a charge of 5.0 C and particle 2...Ch. 24 - SSM Identical 50 C charges are fixed or an x axis...Ch. 24 - GO Proton in a well. Figure 24-59 shows electric...Ch. 24 - In Fig. 24-60, a charged particle either an...Ch. 24 - In Fig. 24-61a, we move an electron from an...Ch. 24 - Suppose N electrons can be placed in either of two...Ch. 24 - Sphere 1 with radius R1 has positive charge q....Ch. 24 - SSM WWW Two metal spheres, each of radius 3.0 cm,...Ch. 24 - A hollow metal sphere has a potential of 400 V...Ch. 24 - SSM What is the excess charge on a conducting...Ch. 24 - Two isolated, concentric, conducting spherical...Ch. 24 - A metal sphere of radius 15 cm has a net charge of...Ch. 24 - Here are the charges and coordinates of two...Ch. 24 - SSM A long, solid, conducting cylinder has a...Ch. 24 - The chocolate crumb mystery. This story begins...Ch. 24 - SSM Starting from Eq. 24-30, derive an expression...Ch. 24 - The magnitude E of an electric field depends on...Ch. 24 - a If an isolated conducting sphere 10 cm in radius...Ch. 24 - Three particles, charge q1 = 10 C, q2 = 20 C, and...Ch. 24 - An electric field of approximately 100 V/m is...Ch. 24 - A Gaussian sphere of radius 4.00 cm is centered or...Ch. 24 - In a Millikan oil-drop experiment Module 22-6, a...Ch. 24 - Figure 24-63 shows three circular, nonconducting...Ch. 24 - An electron is released from rest on the axis of...Ch. 24 - Figure 24-64 shows a ring of outer radius R = 13.0...Ch. 24 - GO Electron in a well. Figure 24-65 shows electric...Ch. 24 - a If Earth had a uniform surface charge density of...Ch. 24 - Prob. 83PCh. 24 - A solid conducting sphere of radius 3.0 cm has a...Ch. 24 - In Fig. 24-67, we move a particle of charge 2e in...Ch. 24 - Figure 24-68 shows a hemisphere with a charge of...Ch. 24 - SSM Three 0.12 C charges form an equilateral...Ch. 24 - Two charges q = 2.0 C are fixed a distance d = 2.0...Ch. 24 - Initially two electrons are fixed in place with a...Ch. 24 - A particle of positive charge Q is fixed at point...Ch. 24 - Two charged, parallel, flat conducting surfaces...Ch. 24 - In Fig. 24-70, point P is at the center of the...Ch. 24 - SSM A uniform charge of 16.0 C is on a thin...Ch. 24 - Consider a particle with charge q = 150 108 C,...Ch. 24 - Prob. 95PCh. 24 - A charge q is distributed uniformly throughout a...Ch. 24 - SSM A solid copper sphere whose radius is 1.0 cm...Ch. 24 - In Fig. 24-71, a metal sphere with charge q = 5.00...Ch. 24 - a Using Eq. 24-32, show that the electric...Ch. 24 - An alpha particle which has two protons is seat...Ch. 24 - In the quark model of fundamental particles, a...Ch. 24 - A charge of 1.50 108 C lies on an isolated metal...Ch. 24 - In Fig. 24-72, two particles of charges q1 and q2...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
Use the following graph to answer questions 3 and 4. 3. Which of the lines best depicts the log phase of a ther...
Microbiology: An Introduction
All of the following terms can appropriately describe humans except: a. primary consumer b. autotroph c. hetero...
Human Biology: Concepts and Current Issues (8th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Three identical conducting spheres are fixed along a single line. The middle sphere is equidistant from the other two so that the center-to-center distance between the middle sphere and either of the other two is 0.125 m. Initially, only the middle sphere is charged, with qmiddle = +35.6 nC. The middle sphere is later connected by a conducting wire to the sphere on the left. The wire is removed and then used to connect the middle sphere to the sphere on the right. The wire is again removed. a. C What is the charge on each sphere? b. C Which sphere experiences the greatest electrostatic force? c. N What is the magnitude of that force?arrow_forwardA proton is fired from very far away directly at a fixed particle with charge q = 1.28 1018 C. If the initial speed of the proton is 2.4 105 m/s, what is its distance of closest approach to the fixed particle? The mass of a proton is 1.67 1027 kg.arrow_forward(a) Find the electric field at the center of the triangular configuration of charges in Figure 18-54., given that qa=+ 2.50 nC, qb=-8.00 nC, and qc=+ 1.50 nC. (b) Is there any combination of charges, other than qa= qb=qc,that will produce a zero strength electric field at the center of the triangular configuration?arrow_forward
- a. In Figure 23.8, why are there three plus signs on the red rod and three minus signs on the red cloth? b. Which object in Figure 23.8 has the greatest positive charge? How do you know?arrow_forwardaA plastic rod of length = 24.0 cm is uniformly charged with a total charge of +12.0 C. The rod is formed into a semicircle with its center at the origin of the xy plane (Fig. P24.34). What are the magnitude and direction of the electric field at the origin? Figure P24.34arrow_forwardConsider the electric dipole shown in Figure P19.20. Show that the electric field at a distant point on the + x axis is Ex 4 keqa/x3.arrow_forward
- A metal sphere with charge +8.00 nC is attached to the left-hand end of a nonconducting rod of length L = 2.00 m. A second sphere with charge +2.00 nC is fixed to the right-hand end of the rod (Fig. P23.53). At what position d along the rod can a charged bead be placed for the bead to be in equilibrium? FIGURE P23.53arrow_forward(i) A metallic sphere A of radius 1.00 cm is several centimeters away from a metallic spherical shell B of radius 2.00 cm. Charge 450 nC is placed on A, with no charge on B or anywhere nearby. Next, the two objects are joined by a long, thin, metallic wire (as shown in Fig. 25.19), and finally the wire is removed. How is the charge shared between A and B? (a) 0 on A. 450 nC on B (b) 90.0 nC on A and 360 nC on B, with equal surface charge densities (c) 150 nC on A and 300 nC on B (d) 225 nC on A and 225 nC on B (e) 450 nC on A and 0 on B (ii) A metallic sphere A of radius 1 cm with charge 450 nC hangs on an insulating thread inside an uncharged thin metallic spherical shell B of radius 2 cm. Next, A is made temporarily to touch the inner surface of B. How is the charge then shared between them? Choose from the same possibilities. Arnold Arons, the only physics teacher yet to have his picture on the cover ol Time magazine, suggested the idea for this question.arrow_forwardConsider n equal positively charged particles each of magnitude Q/n placed symmetrically around a circle of radius a. (a) Calculate the magnitude of the electric field at a point a distance x from the center of the circle and on the line passing through the center and perpendicular to the plane of the circle. (b) Explain why this result is identical to the result of the calculation done in Example 23.8.arrow_forward
- (a) Find the total Coulomb force on a charge of 2.00 nC located at x = 4.00 cm in Figure 18.52 (b): given that q = 1,00C . (b) Find the x-position at which the electric field is zero in Figure 18.52 (b).arrow_forwardThis is about inject printing of expiration dates on eggs.arrow_forwardThe smiling face of the figure consists of three items: 1. a thin rod of charge -3.90 µC that forms a full circle of radius 7.80 cm; 2. a second thin rod of charge 2.60 μC that forms a circular arc of radius 5.20 cm, subtending an angle of 90° about the center of the full circle; 3. an electric dipole with a dipole moment that is perpendicular to a radial line and has magnitude 1.88 x 10-21 C-m. What is the net electric potential at the center? Number i Units Farrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY