83. E. coli Growth A strain of E. coli Beu 397-recA441 is placed into a nutrient broth at 30 ° Celsius and allowed to grow. The data shown in the table are collected. The population is measured in grams and the time in hours. Since population P depends on time t , and each input corresponds to exactly one output, we can say that population is a function of time. Thus P(t) represents the population at time t . (a) Find the average rate of change of the population from 0 to 2.5 hours. (b) Find the average rate of change of the population from 4.5 to 6 hours. (c) What is happening to the average rate of change as time passes?
83. E. coli Growth A strain of E. coli Beu 397-recA441 is placed into a nutrient broth at 30 ° Celsius and allowed to grow. The data shown in the table are collected. The population is measured in grams and the time in hours. Since population P depends on time t , and each input corresponds to exactly one output, we can say that population is a function of time. Thus P(t) represents the population at time t . (a) Find the average rate of change of the population from 0 to 2.5 hours. (b) Find the average rate of change of the population from 4.5 to 6 hours. (c) What is happening to the average rate of change as time passes?
Solution Summary: The author explains how the average rate of change of the population from 0 to 2.5 hours is 0.036.
83. E. coli Growth A strain of E. coli Beu 397-recA441 is placed into a nutrient broth at
Celsius and allowed to grow. The data shown in the table are collected. The population is measured in grams and the time in hours. Since population P depends on time t, and each input corresponds to exactly one output, we can say that population is a function of time. Thus P(t) represents the population at time t.
(a) Find the average rate of change of the population from 0 to 2.5 hours.
(b) Find the average rate of change of the population from 4.5 to 6 hours.
(c) What is happening to the average rate of change as time passes?
This question builds on an earlier problem. The randomized numbers may have changed, but have your work for the previous problem available to help with this one.
A 4-centimeter rod is attached at one end to a point A rotating counterclockwise on a wheel of radius 2 cm. The other end B is free to move back and forth along a horizontal bar that goes through the center of the wheel. At time t=0 the rod is situated as in the diagram at the left below. The
wheel rotates counterclockwise at 1.5 rev/sec. At some point, the rod will be tangent to the circle as shown in the third picture.
A
B
A
B
at some instant, the piston will be tangent to the circle
(a) Express the x and y coordinates of point A as functions of t:
x= 2 cos(3πt)
and y= 2 sin(3t)
(b) Write a formula for the slope of the tangent line to the circle at the point A at time t seconds:
-cot(3πt)
sin(3лt)
(c) Express the x-coordinate of the right end of the rod at point B as a function of t: 2 cos(3πt) +411-
4
-2 sin (3лt)
(d)…
5. [-/1 Points]
DETAILS
MY NOTES
SESSCALCET2 6.5.AE.003.
y
y= ex²
0
Video Example
x
EXAMPLE 3
(a) Use the Midpoint Rule with n = 10 to approximate the integral
कर
L'ex²
dx.
(b) Give an upper bound for the error involved in this approximation.
SOLUTION
8+2
1
L'ex² d
(a) Since a = 0, b = 1, and n = 10, the Midpoint Rule gives the following. (Round your answer to six decimal places.)
dx Ax[f(0.05) + f(0.15) + ... + f(0.85) + f(0.95)]
0.1 [0.0025 +0.0225
+
+ e0.0625 + 0.1225
e0.3025 + e0.4225
+ e0.2025
+
+ e0.5625 €0.7225 +0.9025]
The figure illustrates this approximation.
(b) Since f(x) = ex², we have f'(x)
=
0 ≤ f'(x) =
< 6e.
ASK YOUR TEACHER
and f'(x) =
Also, since 0 ≤ x ≤ 1 we have x² ≤
and so
Taking K = 6e, a = 0, b = 1, and n = 10 in the error estimate, we see that an upper bound for the error is as follows. (Round your final
answer to five decimal places.)
6e(1)3
e
24(
=
≈
2. [-/1 Points]
DETAILS
MY NOTES
SESSCALCET2 6.5.015.
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with the specified value of n. (Round your answers to six decimal places.)
ASK YOUR TEACHER
3
1
3 +
dy, n = 6
(a) the Trapezoidal Rule
(b) the Midpoint Rule
(c) Simpson's Rule
Need Help? Read It
Watch It
Chapter 2 Solutions
Precalculus Enhanced with Graphing Utilities, Books a la Carte Edition Plus NEW MyLab Math -- Access Card Package (7th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY