(a)
Solve the equation
(a)
Answer to Problem 55HP
Explanation of Solution
Given:
The equation
Concept Used:
Addition or Subtraction Property of Equality:
If
The property that states that if you add or subtract the same number to both sides of an equation, the sides remain equal (i.e., the equation continues to be true.)
Multiplication and Division Properties of Equality:
If
If
In other words, if two expressions are equal to each other and you multiply or divide (except for 0) the exact same constant to both sides, the two sides will remain equal.
Calculation:
The equation:
Step1: Use the cross multiplication method:
Solve:
In an equation the variable term in the left side and right side are same, the equation has no solutions (if no value of the variable makes the equation true).
Inconsistent equations: No solutions
For example, 3=3 is an identity equation. An equation like 3=5 is an inconsistent equation, since 3 is not equal to 5. If in the process of solving an equation we end up with an inconsistent equation, then the original equation has no solutions.
Thus, the solution of the equation
(b)
Solve the equation
(b)
Answer to Problem 55HP
Has a solution;
Explanation of Solution
Given:
The equation:
Concept Used:
Addition or Subtraction Property of Equality:
If
The property that states that if you add or subtract the same number to both sides of an equation, the sides remain equal (i.e., the equation continues to be true.)
Multiplication and Division Properties of Equality:
If
If
In other words, if two expressions are equal to each other and you multiply or divide (except for 0) the exact same constant to both sides, the two sides will remain equal.
Calculation:
Step1: Use the cross multiplication method:
The equation:
Solve:
Thus, the solution of the equation
(c)
Solve the equation
(c)
Answer to Problem 55HP
Explanation of Solution
Given:
The equation:
Concept Used:
Addition or Subtraction Property of Equality:
If
The property that states that if you add or subtract the same number to both sides of an equation, the sides remain equal (i.e., the equation continues to be true.)
Multiplication and Division Properties of Equality:
If
If
In other words, if two expressions are equal to each other and you multiply or divide (except for 0) the exact same constant to both sides, the two sides will remain equal.
Calculation:
The equation:
Solve:
Inconsistent equations: No solutions
For example, 3=3 is an identity equation. An equation like 3=5 is an inconsistent equation, since 3 is not equal to 5. If in the process of solving an equation we end up with an inconsistent equation, then the original equation has no solutions.
Thus, the solution of the equation
Chapter 2 Solutions
Algebra 1, Homework Practice Workbook (MERRILL ALGEBRA 1)
Additional Math Textbook Solutions
Algebra and Trigonometry (6th Edition)
Elementary Statistics: Picturing the World (7th Edition)
University Calculus: Early Transcendentals (4th Edition)
A First Course in Probability (10th Edition)
Introductory Statistics
Pre-Algebra Student Edition
- OR 16 f(x) = Ef 16 χ по x²-2 410 | y = (x+2) + 4 Y-INT: y = 0 X-INT: X=0 VA: x=2 OA: y=x+2 0 X-INT: X=-2 X-INT: y = 2 VA 0 2 whole. 2-2 4 y - (x+2) = 27-270 + xxx> 2 क् above OA (x+2) OA x-2/x²+0x+0 2 x-2x 2x+O 2x-4 4 X<-1000 4/4/2<0 below Of y VA X=2 X-2 OA y=x+2 -2 2 (0,0) 2 χarrow_forwardI need help solving the equation 3x+5=8arrow_forwardWhat is the domain, range, increasing intervals (theres 3), decreasing intervals, roots, y-intercepts, end behavior (approaches four times), leading coffiencent status (is it negative, positivie?) the degress status (zero, undifined etc ), the absolute max, is there a absolute minimum, relative minimum, relative maximum, the root is that has a multiplicity of 2, the multiplicity of 3.arrow_forward
- What is the vertex, axis of symmerty, all of the solutions, all of the end behaviors, the increasing interval, the decreasing interval, describe all of the transformations that have occurred EXAMPLE Vertical shrink/compression (wider). or Vertical translation down, the domain and range of this graph EXAMPLE Domain: x ≤ -1 Range: y ≥ -4.arrow_forward4. Select all of the solutions for x²+x - 12 = 0? A. -12 B. -4 C. -3 D. 3 E 4 F 12 4 of 10arrow_forward2. Select all of the polynomials with the degree of 7. A. h(x) = (4x + 2)³(x − 7)(3x + 1)4 B h(x) = (x + 7)³(2x + 1)^(6x − 5)² ☐ Ch(x)=(3x² + 9)(x + 4)(8x + 2)ª h(x) = (x + 6)²(9x + 2) (x − 3) h(x)=(-x-7)² (x + 8)²(7x + 4)³ Scroll down to see more 2 of 10arrow_forward
- 1. If all of the zeros for a polynomial are included in the graph, which polynomial could the graph represent? 100 -6 -2 0 2 100 200arrow_forward3. Select the polynomial that matches the description given: Zero at 4 with multiplicity 3 Zero at −1 with multiplicity 2 Zero at -10 with multiplicity 1 Zero at 5 with multiplicity 5 ○ A. P(x) = (x − 4)³(x + 1)²(x + 10)(x — 5)³ B - P(x) = (x + 4)³(x − 1)²(x − 10)(x + 5)³ ○ ° P(x) = (1 − 3)'(x + 2)(x + 1)"'" (x — 5)³ 51 P(r) = (x-4)³(x − 1)(x + 10)(x − 5 3 of 10arrow_forwardMatch the equation, graph, and description of transformation. Horizontal translation 1 unit right; vertical translation 1 unit up; vertical shrink of 1/2; reflection across the x axis Horizontal translation 1 unit left; vertical translation 1 unit down; vertical stretch of 2 Horizontal translation 2 units right; reflection across the x-axis Vertical translation 1 unit up; vertical stretch of 2; reflection across the x-axis Reflection across the x - axis; vertical translation 2 units down Horizontal translation 2 units left Horizontal translation 2 units right Vertical translation 1 unit down; vertical shrink of 1/2; reflection across the x-axis Vertical translation 2 units down Horizontal translation 1 unit left; vertical translation 2 units up; vertical stretch of 2; reflection across the x - axis f(x) = - =-½ ½ (x − 1)²+1 f(x) = x²-2 f(x) = -2(x+1)²+2 f(x)=2(x+1)²-1 f(x)=-(x-2)² f(x)=(x-2)² f(x) = f(x) = -2x²+1 f(x) = -x²-2 f(x) = (x+2)²arrow_forward
- What is the vertex, increasing interval, decreasing interval, domain, range, root/solution/zero, and the end behavior?arrow_forwardThe augmented matrix of a linear system has been reduced by row operations to the form shown. Continue the appropriate row operations and describe the solution set of the original system. 1 -1 0 1 -2 00-4 0-6 0 0 1 - 3 3 0 001 4arrow_forwardSolve the system. X1 - 3x3 = 10 4x1 + 2x2 + 3x3 = 22 ×2 + 4x3 = -2arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education