EBK MECHANICS OF MATERIALS
7th Edition
ISBN: 8220102804487
Author: BEER
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2.3, Problem 54P
The steel rails of a railroad (rack (Es = 200GPa, αs = 11.7 × 10-6/°C) were laid at a temperature of 6°C. Determine the normal stress in the rails when the temperature reaches 48°C, assuming that the rails (a) are welded to form a continuous track, (b) are 10 m long with 3-mm gaps between them.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At room temperature (20˚C) a 0.5 mm gap exists between theends of the rods shown. At a later time when the temperature has reached140˚C, determine (a) the normal stress in the aluminum rod, (b) the changein length of the aluminum rod.
10-m-long steel rails of a railroad track (Es = 200 GPa and as = 11.7 × 10-0PC) were laid at a temperature of 8.5°C.
Determine the normal stress in the rails when the temperature reaches 48°C, assuming that the rails are welded to form a continuous
track.
The normal stress in the rails is
MPa.
The steel rails of a railroad track (Es5 200 GPa, αs5 11.7 3 10–6/°C) were laid at a temperature of 6°C. Determine the normal stress in the rails when the temperature reaches 48°C, assuming that the rails (a) are welded to form a continuous track, (b) are 10 m long with 3-mm gaps between them
Chapter 2 Solutions
EBK MECHANICS OF MATERIALS
Ch. 2.1 - A nylon thread is subjected to a 8.5-N tension...Ch. 2.1 - A 4.8-ft-long steel wire of 14 -in.-diameter is...Ch. 2.1 - An 18-m-long steel wire of 5-mm diameter is to be...Ch. 2.1 - Two gage marks are placed exactly 250 mm apart on...Ch. 2.1 - An aluminum pipe must not stretch more than 0.05...Ch. 2.1 - A control rod made of yellow brass must not...Ch. 2.1 - A steel control rod is 5.5 ft long and must not...Ch. 2.1 - A cast-iron tube is used to support a compressive...Ch. 2.1 - A 4-m-long steel rod must not stretch more than 3...Ch. 2.1 - A nylon thread is to be subjected to a 10-N...
Ch. 2.1 - A block of 10-in. length and 1.8 1.6-in. cross...Ch. 2.1 - A square yellow-brass bar must not stretch more...Ch. 2.1 - Rod BD is made of steel (E = 29 106 psi) and is...Ch. 2.1 - The 4-mm-diameter cable BC is made of a steel with...Ch. 2.1 - A single axial load of magnitude P = 15 kips is...Ch. 2.1 - A 250-mm-long aluminum tube (E = 70 GPa) of 36-mm...Ch. 2.1 - The specimen shown has been cut from a...Ch. 2.1 - The brass tube AB (E = 105 GPa) has a...Ch. 2.1 - Both portions of the rod ABC are made of an...Ch. 2.1 - The rod ABC is made of an aluminum for which E =...Ch. 2.1 - For the steel truss (E = 200 GPa) and loading...Ch. 2.1 - For the steel truss (E = 29 106 psi) and loading...Ch. 2.1 - Members AB and BC are made of steel (E = 29 106...Ch. 2.1 - The steel frame (E = 200 GPa) shown has a diagonal...Ch. 2.1 - Link BD is made of brass (E = 105 GPa) and has a...Ch. 2.1 - Members ABC and DEF are joined with steel links (E...Ch. 2.1 - Each of the links AB and CD is made of aluminum (E...Ch. 2.1 - The length of the 332-in.-diameter steel wire CD...Ch. 2.1 - A homogenous cable of length L and uniform cross...Ch. 2.1 - The vertical load P is applied at the center A of...Ch. 2.1 - Denoting by the "engineering strain'' in a...Ch. 2.1 - The volume of a tensile specimen is essentially...Ch. 2.3 - An axial centric force of magnitude P = 450 kN is...Ch. 2.3 - An axial centric force of magnitude P = 450 kN is...Ch. 2.3 - The 4.5-ft concrete post is reinforced with six...Ch. 2.3 - The 4.5-ft concrete post is reinforced with six...Ch. 2.3 - An axial force of 200 kW is applied to the...Ch. 2.3 - The length of the assembly shown decreases by 0.40...Ch. 2.3 - A polystyrene rod consisting of two cylindrical...Ch. 2.3 - Three steel rods (E = 29 106 psi) support an...Ch. 2.3 - Fig. P2.41 2.41 Two cylindrical rods, one of steel...Ch. 2.3 - Solve Prob. 2.41, assuming that rod AC is made of...Ch. 2.3 - Each of the rods BD and CE is made of brass (E =...Ch. 2.3 - The rigid bar AD is supported by two steel wires...Ch. 2.3 - The rigid bar ABC is suspended from three wines of...Ch. 2.3 - The rigid bar AD is supported by two steel wires...Ch. 2.3 - The aluminum shell is fully bonded to the brass...Ch. 2.3 - The aluminum shell is fully bonded to the brass...Ch. 2.3 - The brass shell (b = 11.6 10-6/F) is fully bonded...Ch. 2.3 - The concrete post (Ec = 3.6 106) psi and c = 5.5 ...Ch. 2.3 - A rod consisting of two cylindrical portions AB...Ch. 2.3 - A rod consisting of two cylindrical portions AB...Ch. 2.3 - Fig. P2.52 2.52 A rod consisting of two...Ch. 2.3 - The steel rails of a railroad (rack (Es = 200GPa,...Ch. 2.3 - Two steel bars (Es = 200 GPa and s = 11.7 10-6/C)...Ch. 2.3 - Determine the maximum load P that can be applied...Ch. 2.3 - An aluminum rod (Ea = 70 GPa, a = 23.6 10-6/C)...Ch. 2.3 - Knowing that a 0.02-in. gap exists when the...Ch. 2.3 - Determine (a) the compressive force in the bars...Ch. 2.3 - At room temperature (20C) a 0.5-mm gap exists...Ch. 2.9 - A standard tension test is used to determine the...Ch. 2.9 - A 2-m length of an aluminum pipe of 240-nun outer...Ch. 2.9 - A line of slope 4:10 has been scribed on a...Ch. 2.9 - A 2.75-kN tensile load is applied to a test coupon...Ch. 2.9 - Fig. P2.65 2.65 In a standard tensile test a steel...Ch. 2.9 - The change in diameter of a large steel bolt is...Ch. 2.9 - The brass rod AD is fitted with a jacket that is...Ch. 2.9 - A fabric used in air-inflated structures is...Ch. 2.9 - A 1-in. square was scribed on the side of a large...Ch. 2.9 - The block shown is made of a magnesium alloy for...Ch. 2.9 - The homogeneous plate ABCD is subjected to a...Ch. 2.9 - For a member under axial loading, express the...Ch. 2.9 - In many situations it is known that the normal...Ch. 2.9 - In many situations physical constraints prevent...Ch. 2.9 - The plastic block shown is bonded to a rigid...Ch. 2.9 - The plastic block shown is bonded to a rigid...Ch. 2.9 - Two blocks of rubber with a modulus of rigidity G...Ch. 2.9 - Fig. P2.77 and P2.78 2.78 Two blocks of rubber...Ch. 2.9 - An elastomeric bearing (G = 130 psi) is used to...Ch. 2.9 - 2.80 For the elastomeric bearing In Prob. 2.79...Ch. 2.9 - A vibration isolation unit consists of two blocks...Ch. 2.9 - Prob. 82PCh. 2.9 - Prob. 83PCh. 2.9 - Prob. 84PCh. 2.9 - Prob. 85PCh. 2.9 - A 2.75-kN tensile load is applied to a test coupon...Ch. 2.9 - A vibration isolation support consists of a rod A...Ch. 2.9 - Prob. 88PCh. 2.9 - Prob. 89PCh. 2.9 - Show that for any given material, the ratio G/E of...Ch. 2.9 - Prob. 91PCh. 2.9 - Prob. 92PCh. 2.13 - Knowing that, for the plate shown, the allowable...Ch. 2.13 - Knowing that P = 38 kN, determine the maximum...Ch. 2.13 - A hole is to be drilled in the plate at A. The...Ch. 2.13 - Fig. P2.95 and P2.96 2.96 (a) For P = 13 kips and...Ch. 2.13 - 2.97 Knowing that the hole has a diameter of 9 mm,...Ch. 2.13 - For P = 100 kN, determine the minimum plate...Ch. 2.13 - Prob. 99PCh. 2.13 - A centric axial force is applied to the steel bar...Ch. 2.13 - The cylindrical rod AB has a length L = 5 ft and a...Ch. 2.13 - Fig. P2.101 and P.102 2.102 The cylindrical rod AB...Ch. 2.13 - Rod AB is made of a mild steel that is assumed to...Ch. 2.13 - Prob. 104PCh. 2.13 - Rod ABC consists of two cylindrical portions and...Ch. 2.13 - Prob. 106PCh. 2.13 - Prob. 107PCh. 2.13 - Prob. 108PCh. 2.13 - Each cable has a cross-sectional area of 100 mm2...Ch. 2.13 - Prob. 110PCh. 2.13 - Two tempered-steel bars, each 316 in. thick, are...Ch. 2.13 - Prob. 112PCh. 2.13 - Prob. 113PCh. 2.13 - Prob. 114PCh. 2.13 - Prob. 115PCh. 2.13 - Prob. 116PCh. 2.13 - Prob. 117PCh. 2.13 - Prob. 118PCh. 2.13 - Prob. 119PCh. 2.13 - For the composite bar in Prob. 2.111, determine...Ch. 2.13 - Prob. 121PCh. 2.13 - Bar AB has a cross-sectional area of 1200 mm2 and...Ch. 2.13 - Bar AB has a cross-sectional area of 1200 mm2 and...Ch. 2 - The uniform wire ABC, of unstretched length 2l, is...Ch. 2 - The aluminum rod ABC (E = 10.1 106 psi), which...Ch. 2 - Two solid cylindrical rods are joined at B and...Ch. 2 - Prob. 127RPCh. 2 - Prob. 128RPCh. 2 - Prob. 129RPCh. 2 - A 4-ft concrete post is reinforced with four steel...Ch. 2 - The steel rods BE and CD each have a 16-mm...Ch. 2 - Prob. 132RPCh. 2 - Prob. 133RPCh. 2 - The aluminum test specimen shown is subjected to...Ch. 2 - Prob. 135RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- As shown in the figure, when the temperature was 24 ° C, a 0.5 mm gap was left. Determine the approximate value (° C) of the required temperature so that the normal stress in the aluminum bar is 75 MPa.arrow_forwardAs shown in the figure, when the temperature was 24 ° C, a 0.5 mm gap was left. Determine the approximate value (° C) of the required temperature so that the normal stress in the aluminum bar is 75 MPa.arrow_forwardRequired information 10-m-long steel rails of a railroad track (Es = 200 GPa and as = 11.7 x 10-0PC) were laid at a temperature of 9°C. Determine the normal stress in the rails when the temperature reaches 48°C, assuming that the rails are welded to form a continuous track, The normal stress in the rails is MPa.arrow_forward
- An aluminum rod (E = 70 GPa, α =23.6 x 10-6/°C) and steel link (E = 200 GPa, α = 11.7 x 10-6/°C) have the dimensions shown at a temperature of 20oC. The steel link is heated until the aluminum rod can befitted freely into it. The temperature of the whole assembly is then raised to 150°C. Determine the final stress in the rod and in the link.arrow_forwardA spherical gas tank is fabricated by bolting together two thin-walled hemispherical shells with an inner diameter of 8 m. The gas is pressurized to 2.0 MPa. The shells have an allowable normal stress of 150 MPa, and the 25 mm-diameter bolts have an allowable normal stress of 250 MPa. (a) Determine the minimum thickness of the walls of the tank to the nearest mm. (b) Determine the minimum number of bolts to connect the hemispheres.arrow_forward10-m-long steel rails of a railroad track (Es = 200 GPa and αs = 11.7 × 10-6/°C) were laid at a temperature of 6°C. Determine the normal stress in the rails when the temperature reaches 48°C, assuming that the rails are welded to form a continuous track. The normal stress in the rails is _____ MPa.arrow_forward
- Q1 A compound bar is constructed from three bars 50 mm wide and 12 mm thick fastened together to form a bar of 50 mm width and 36 mm height. The middle bar is made of Aluminum alloy for which E-70 GPa and the outside bars are made of Brass with E-100 GPa. If the bars are initially fastened at 18°C and the temperature of the whole assembly is then raised to 50°C. A)Determine the stresses set up in the brass and aluminum. B) Determine the compression Load at which the total stress in one bar will be zero, find also the total stress of the other bar.arrow_forward1. A 60-mm diameter steel tube with a wall thickness of 3 mm just fits in a rigid hole. Determine the tangential stress developed if an axial compressive load of 12 kN is applied. Use v = 0.30 and E = 200 GPa. Answer: 0 = 6.37 MPa 2. A 200-mm long bronze tube closed at both ends fits without clearance in a 70-mm hole in a rigid block. It has a diameter of 70 mm and a wall thickness of 5 mm. The tube then sustained an internal pressure of 4.5 MPa. Use v = 0.33 and E= 83 GPa. Compute the tangential stress in the tube. Answer: Ot = 5.20 MPaarrow_forwardA copper rod with 0.15 cm diameter is enclosed by a steel tube that has an outside diameter of 0.3 cm and an internal diameter of 0.2 cm. The assembly is fixed at each end. Determine the stresses in the rod and tube if the temperature is at 220oC; at 10oC, there is no longitudinal stress. Based on laboratory results for steel, E = 2.1 x 105 N/mm2, a = 11x10-6/oC, and for copper, E = 1 x 105 N/mm2, a = 18x10-6/oCarrow_forward
- An engineering machine component operating in a high temperature environment consists of a copper pipe having a cross-sectional area of 2 000 mm2 and 0.3 m long, which is placed between two rigid caps. Four M22 steel bolts are symmetrically arranged around the tube and parallel to the axis of the tube and are lightly tightened. 3.1 Find the stress in the pipe and the bolts if the temperature of the assembly is increased from 25 0C to 95 0C. 3.2 What load will each bolt carry at the raised temperature? 3.3 Make a neat sketch of the assembly. (ESt = 200 GPa, ECu = 100 GPa, αSt = 12 × 10-6/ oC, αCu = 16 × 10-6/ oC)arrow_forwardThe steel rails for a railroad track (E, = 29 x 106 psi, a, = 6.5 x 10-6/°F) were laid out at a temperature of 30°F. Determine the normal stress in the rails when the temperature reaches 125°F assuming that the rails (a) are welded to form a continuous track, (b) are 39 ft long with ÷ in. gaps between them.arrow_forwardAt room temperature (20°C), a 0.5-mm gap exists between the ends of the rods shown. The temperature eventually reaches a value of 139°C. Determine the normal stress in the aluminum rod.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Differences between Temporary Joining and Permanent Joining.; Author: Academic Gain Tutorials;https://www.youtube.com/watch?v=PTr8QZhgXyg;License: Standard Youtube License