Concept explainers
The rod ABC is made of an aluminum for which E = 70 GPa. Knowing that P = 6 kN and Q = 42 kN, determine the deflection of (a) point A, (b) point B.
Fig. P2.19 and P2.20
a)
The deflection of the point A
Answer to Problem 20P
The deflection of the point A
Explanation of Solution
Given information:
The Young’s modulus of the aluminium (E) is
The force at the point A (P) is
The force at the point B (Q) is
The diameter of the rod AB
The diameter of the rod BC
The length of the rod AB
The length of the rod BC
Calculation:
Calculate the cross-sectional area of the rod AB
Substitute
Calculate the cross-sectional area of the rod BC
Substitute
Calculate the defection of the rod AB
Substitute
Calculate the defection of the rod BC
Substitute
Calculate the deflection of the point A
Substitute
Hence, the deflection of the point A
b)
The deflection of point the B
Answer to Problem 20P
The deflection of the B
Explanation of Solution
Given information:
The Young’s modulus of the aluminium (E) is
The force at the point A (P) is
The force at the point B (Q) is
The diameter of the rod AB
The diameter of the rod BC
The length of the rod AB
The length of the rod BC
Calculation:
Calculate the cross-sectional area of the rod AB
Substitute
Calculate the cross-sectional area of the rod BC
Substitute
Calculate the defection of the rod AB
Substitute
Calculate the defection of the rod BC
Substitute
The deflection of the point B
Therefore, the deflection of the point B
Want to see more full solutions like this?
Chapter 2 Solutions
EBK MECHANICS OF MATERIALS
- = P2.39 Two cylindrical rods, AC made of aluminum and CD made of steel, are joined at C and restrained by rigid supports at A and D. For the loading shown and knowing that Ea 10.4 × 106 psi and Es = 29 × 106 psi, determine (a) the reactions at A and D, (b) the deflection of point C. -8 in.- E A 1-¹-in. diameter Fig. P2.39 10 in.-10 in.. B. 18 kips C D 14 kips 15-in. diameterarrow_forward2.75 plzarrow_forward2.75 The plastic block shown is bonded to a rigid support and to a vertical plate to which a 55-kip load P is applied. Knowing that for the plastic used G = 150 ksi, determine the deflection of the plate.2.76 What load P should be applied to the plate of Prob. 2.75 to produce a 116-in. deflection? Solve 2.76arrow_forward
- Two cylindrical rods, one of steel and the other of brass, are joined at C and restrained by rigid supports at A and E. The steel rod has a length of 300 mm while the brass rod has a length of 200 mm. The diameters of the rods are shown in the figure below. A force of 60 kN is applied at point B of the steel segment. For the loading shown and knowing that modulus of elasticity values for steel and brass are respectively Es = 200 GPa and Eb = 105 GPa, determine a.) The reactions at A and E: RA and RE. b.) The deflection of point C from its original location. how to doarrow_forward2. The length of the 2-mm-diameter steel wire CD has been adjusted so that, with no load applied, a gap of 1.5 mm exists between the end Bof the rigid beam ACB and a contact point E. load should be applied to the beam to cause contact between B and E. Using E = 200 GPa, determine where a 225-N 250 mm 225 N 1.5 mm B C A 360 mm 90 mmarrow_forwardQ1. The steel rod AC and brass rod CD are rigidly joined at C. The loads acting are P=60 kN and Q=80 kN. Disregarding the weight of the rods, determine the deflection of (a) point C (b) point D. Given E=200 GPa for steel; E=105 GPa for brass. 2 m B D=40 mm D=25 mm D to 2 m 3 marrow_forward
- 2.5 m 3.5 m -4.0 m Fig. P2.13arrow_forward2.14 The aluminum rod ABC (E 10.1 × 106 psi), which consists of two cylindrical portions AB and BC, is to be replaced with a cylin- drical steel rod DE (E = 29 × 106 psi) of the same overall length. Determine the minimum required diameter d of the steel rod if its vertical deformation is not to exceed the deformation of the aluminum rod under the same load and if the allowable stress in the steel rod is not to exceed 24 ksi. Ĵ 12 in. + 18 in. 28 kips -1.5 in. Fig. P2.14 B -2.25 in. 28 kips D E --arrow_forward2.5m 3.5m 4.0m- The 4-mm diameter cable BC is made of steel with E = 200 GPa. Knowing that the maximum stress in the cable must not exceed 190 MPa and that the elongation of the cable must not exceed 6mm, find the maximum load P that can be applied as shown.arrow_forward
- The 4-mm-diameter cable BC is made of a steel with E = 200 GPa. Knowing that the maximum stress in the cable must not exceed 190 MPa and that the elongation of the cable must not exceed 4 mm, find the maximum load P that can be applied as shown. BQ 2.5 m P 3.5 m A -4.0 m - C The maximum load P that can be applied is KN.arrow_forward8arrow_forwardBoth portions of the rod ABC are made out of an aluminum forwhich E = 70 GPa. Knowing that the magnitude of P is 4 kN, determine (a)the value of Q so that the deflection at A is zero, (b) the correspondingdeflection of B.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY