Some of the geometric formulas we take for granted today were first derived by methods that anticipate some of the methods of calculus. The Greek mathematician Archimedes (ca. 287—212; BCE) was particularly inventive, using polygons inscribed within circles to approximate the area of the circle as the number of sides of the polygon increased. He never came up with the idea of a limit, but we can use this idea to see what his geometric constructions could have predicted about the limit. We can estimate the area of a circle by computing the area of an inscribed regular polygon. Think of the regular polygon as being made up of n triangles. By taking the limit as the vertex angle of these mangles goes to zero, you can obtain the area of the circle. To see this, carry out the following steps: 4. Find an expression for the area of the n-sided polygon in terms of r and θ .
Some of the geometric formulas we take for granted today were first derived by methods that anticipate some of the methods of calculus. The Greek mathematician Archimedes (ca. 287—212; BCE) was particularly inventive, using polygons inscribed within circles to approximate the area of the circle as the number of sides of the polygon increased. He never came up with the idea of a limit, but we can use this idea to see what his geometric constructions could have predicted about the limit. We can estimate the area of a circle by computing the area of an inscribed regular polygon. Think of the regular polygon as being made up of n triangles. By taking the limit as the vertex angle of these mangles goes to zero, you can obtain the area of the circle. To see this, carry out the following steps: 4. Find an expression for the area of the n-sided polygon in terms of r and θ .
Some of the geometric formulas we take for granted today were first derived by methods that anticipate some of the methods of calculus. The Greek mathematician Archimedes (ca. 287—212; BCE) was particularly inventive, using polygons inscribed within circles to approximate the area of the circle as the number of sides of the polygon increased. He never came up with the idea of a limit, but we can use this idea to see what his geometric constructions could have predicted about the limit.
We can estimate the area of a circle by computing the area of an inscribed regular polygon. Think of the regular polygon as being made up of n triangles. By taking the limit as the vertex angle of these mangles goes to zero, you can obtain the area of the circle. To see this, carry out the following steps:
4. Find an expression for the area of the n-sided polygon in terms of r and
θ
.
Definition Definition Two-dimentional plane figure composed of a finite number of straight line segments connected to form a closed chain or circuit. A polygonal circuit's segments are known as its edges or sides, and the points where two edges meet are known as its vertices or corners.
sy = f(x)
+
+
+
+
+
+
+
+
+
X
3
4
5
7
8
9
The function of shown in the figure is continuous on the closed interval [0, 9] and differentiable on the open
interval (0, 9). Which of the following points satisfies conclusions of both the Intermediate Value Theorem
and the Mean Value Theorem for f on the closed interval [0, 9] ?
(A
A
B
B
C
D
=
Q6 What will be the allowable bearing capacity of sand having p = 37° and ydry
19 kN/m³ for (i) 1.5 m strip foundation (ii) 1.5 m x 1.5 m square footing and
(iii)1.5m x 2m rectangular footing. The footings are placed at a depth of 1.5 m
below ground level. Assume F, = 2.5. Use Terzaghi's equations.
0
Ne
Na
Ny
35 57.8 41.4 42.4
40 95.7 81.3 100.4
Q1 The SPT records versus depth are given in table below. Find qan for the raft 12%
foundation with BxB-10x10m and depth of raft D-2m, the allowable
settlement is 50mm.
Elevation, m 0.5 2
2 6.5 9.5 13 18 25
No.of blows, N 11 15 29 32 30 44
0
estigate shear
12%
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.