A small factor. Prove that if a number greater than 1 is not a prime number, then it must have a prime factor less than or equal to its square root. (Hint: Suppose that all the factors are greater than its square root, and show that the product of any two of them must be larger than the original number.) This Mindscape shows that, to determine if a number is a prime, we have only to check divisibility of the primes up to the square root of the number.
A small factor. Prove that if a number greater than 1 is not a prime number, then it must have a prime factor less than or equal to its square root. (Hint: Suppose that all the factors are greater than its square root, and show that the product of any two of them must be larger than the original number.) This Mindscape shows that, to determine if a number is a prime, we have only to check divisibility of the primes up to the square root of the number.
A small factor. Prove that if a number greater than 1 is not a prime number, then it must have a prime factor less than or equal to its square root. (Hint: Suppose that all the factors are greater than its square root, and show that the product of any two of them must be larger than the original number.) This Mindscape shows that, to determine if a number is a prime, we have only to check divisibility of the primes up to the square root of the number.
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
RELATIONS-DOMAIN, RANGE AND CO-DOMAIN (RELATIONS AND FUNCTIONS CBSE/ ISC MATHS); Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=u4IQh46VoU4;License: Standard YouTube License, CC-BY