HEART OF MATHEMATICS
4th Edition
ISBN: 9781119760061
Author: Burger
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.3, Problem 48MS
To determine
To find:The number of primes.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Consider the ceocomp dataset of compensation information for the CEO’s of 100 U.S. companies. We wish to fit aregression model to assess the relationship between CEO compensation in thousands of dollars (includes salary andbonus, but not stock gains) and the following variates:AGE: The CEOs age, in yearsEDUCATN: The CEO’s education level (1 = no college degree; 2 = college/undergrad. degree; 3 = grad. degree)BACKGRD: Background type(1= banking/financial; 2 = sales/marketing; 3 = technical; 4 = legal; 5 = other)TENURE: Number of years employed by the firmEXPER: Number of years as the firm CEOSALES: Sales revenues, in millions of dollarsVAL: Market value of the CEO's stock, in natural logarithm unitsPCNTOWN: Percentage of firm's market value owned by the CEOPROF: Profits of the firm, before taxes, in millions of dollars1) Create a scatterplot matrix for this dataset. Briefly comment on the observed relationships between compensationand the other variates.Note that companies with negative…
6 (Model Selection, Estimation and Prediction of GARCH) Consider the daily returns rt
of General Electric Company stock (ticker: "GE") from "2021-01-01" to "2024-03-31",
comprising a total of 813 daily returns. Using the "fGarch" package of R, outputs of
fitting three GARCH models to the returns are given at the end of this question.
Model 1 ARCH (1) with standard normal innovations;
Model 2
Model 3
GARCH (1, 1) with Student-t innovations;
GARCH (2, 2) with Student-t innovations;
Based on the outputs, answer the following questions.
(a) What can be inferred from the Standardized Residual Tests conducted on Model 1?
(b) Which model do you recommend for prediction between Model 2 and Model 3?
Why?
(c) Write down the fitted model for the model that you recommended in Part (b).
(d) Using the model recommended in Part (b), predict the conditional volatility in the
next trading day, specifically trading day 814.
4 (MLE of ARCH) Suppose rt follows ARCH(2) with E(rt) = 0,
rt = ut, ut =
στει, σε
where {+} is a sequence of independent and identically distributed (iid) standard normal
random variables.
With observations r₁,...,, write down the log-likelihood function for the model esti-
mation.
Chapter 2 Solutions
HEART OF MATHEMATICS
Ch. 2.1 - Muchos mangos. You inherit a large crate of...Ch. 2.1 - Packing balk. Your best friend is about to turn 21...Ch. 2.1 - Alternative rock. You have an empty CD rack...Ch. 2.1 - The Byrds. You have 16 new CDs to put on your...Ch. 2.1 - For the birds. Explain the Pigeonhole principle.Ch. 2.1 - Treasure chest (ExH). Someone offers to give you a...Ch. 2.1 - Order please. Order the following numbers from...Ch. 2.1 - Penny for your thoughts (H). Two thousand years...Ch. 2.1 - Twenty-nine is hat. Find the most interesting...Ch. 2.1 - Perfect numbers. The only natural numbers that...
Ch. 2.1 - Many fold (S). Suppose you were able to take a...Ch. 2.1 - Only one cake. Suppose we had a room filled with...Ch. 2.1 - For the birds. Years ago, before overnight...Ch. 2.1 - Sock hop (ExH). You have 10 pain of socks, five...Ch. 2.1 - The last one. Here is a game to be played with...Ch. 2.1 - See the three. What proportion of the first 1000...Ch. 2.1 - See the three II (H). What proportion of the first...Ch. 2.1 - See the three III. Explain why almost all...Ch. 2.1 - Commuting. One hundred people in your neighborhood...Ch. 2.1 - RIP (S). The Earth has more than 6.8 billion...Ch. 2.1 - Say the sequence. The following are the first few...Ch. 2.1 - Lemonade. You want to buy a new car, and you know...Ch. 2.1 - With a group of folks. In a small group, discuss...Ch. 2.1 - Ramanujan noodles (H). Ramanujan tells you that...Ch. 2.1 - Bird count. You want to know how many pigeons you...Ch. 2.1 - Many pennies. Suppose you have a 33 checkerboard...Ch. 2.1 - Wheres the birdie? One of your pigeons decides to...Ch. 2.2 - Fifteen Fibonaccis. List the first 15 Fibonacci...Ch. 2.2 - Born . What is the precise number that the symbol ...Ch. 2.2 - Tons of ones. Verify that 1+11+11 equals 3/2.Ch. 2.2 - Twos and threes. Simplify the quantities 2+22+22...Ch. 2.2 - The amity of . Solve the following equations for...Ch. 2.2 - Baby bunnies. This question gave the Fibonacci...Ch. 2.2 - Discovering Fibonacci relationships (S). By...Ch. 2.2 - Discovering more Fibonacci relationships, By...Ch. 2.2 - Late bloomers (ExH). Suppose we start with one...Ch. 2.2 - A new start. Suppose we build a sequence of...Ch. 2.2 - Discovering Lucas relationships. By experimenting...Ch. 2.2 - Still more Fibonacci relationships. By...Ch. 2.2 - Even more Fibonacci relationships. By...Ch. 2.2 - Discovering Fibonacci and Lucas relationships. By...Ch. 2.2 - The enlarging area paradox (S). The square shown...Ch. 2.2 - Sum of Fibonacci (H). Express each of the...Ch. 2.2 - Some more sums. Express each of the following...Ch. 2.2 - Fibonacci nim: The first move. Suppose you are...Ch. 2.2 - Fibonacci nim: The first move II. Suppose you are...Ch. 2.2 - Fibonacci nim: The first move III. Suppose you are...Ch. 2.2 - Fibonacci nim: The next move. Suppose you are...Ch. 2.2 - Fibonacci nim: The next move II. Suppose you are...Ch. 2.2 - Prob. 23MSCh. 2.2 - Beat your friend. Play Fibonacci nim with a...Ch. 2.2 - Beat another friend. Play Fibonacci nim with...Ch. 2.2 - Discovering still more Fibonacci relationships. By...Ch. 2.2 - Finding factors (S). By experimenting with...Ch. 2.2 - The rabbits rest. Suppose we have a pair of baby...Ch. 2.2 - Digging up Fibonacci roots. Using the square root...Ch. 2.2 - Tribonacci. Lets start with the numbers 0, 0, 1,...Ch. 2.2 - Prob. 31MSCh. 2.2 - Prob. 32MSCh. 2.2 - Prob. 33MSCh. 2.2 - A big fib (ExH). Suppose we have a natural number...Ch. 2.2 - Decomposing naturals (H). Use the result of...Ch. 2.2 - How big is it? Is it possible for a Fibonacci...Ch. 2.2 - Too small. Suppose we have a natural number that...Ch. 2.2 - Beyond Fibonacci. Suppose we create a new sequence...Ch. 2.2 - Generalized sums. Let Gn be the generalized...Ch. 2.2 - Its hip to be square (H). Adapt the methods of...Ch. 2.2 - Personal perspectives. Write a short essay...Ch. 2.2 - With a group of folks. In a small group, discuss...Ch. 2.2 - Here we celebrate the power of algebra as a...Ch. 2.2 - Finding x(H). Solve for x:x=1+6x.Ch. 2.2 - Appropriate address. Fibonaccis house number is...Ch. 2.2 - Zen bunnies. Your rabbits do yoga every morning in...Ch. 2.2 - The power of gold (H). In 1843 Jacques Binet (not...Ch. 2.3 - PrimaI Instincts. List the first 15 prime numbers.Ch. 2.3 - Fear factor. Express each of the following numbers...Ch. 2.3 - Odd couple. If n is an odd number greater than or...Ch. 2.3 - Tower of power. The first four powers of 3 are...Ch. 2.3 - Compose a list. Give an infinite list of natural...Ch. 2.3 - A silly start. What is the smallest number that...Ch. 2.3 - Waking for a nonprime. What is the smallest...Ch. 2.3 - Always, sometimes, never. Does a prime multiplied...Ch. 2.3 - The dividing line. Does a nonprime divided by a...Ch. 2.3 - Prime power. Is it possible for an extremely large...Ch. 2.3 - Nonprimes (ExH). Are there infinitely many natural...Ch. 2.3 - Prime test. Suppose you are given a number n and...Ch. 2.3 - Twin primes. Find the first 15 pairs of twin...Ch. 2.3 - Goldbach. Express the first 15 even numbers...Ch. 2.3 - Odd Goldbach (H). Can every odd number greater...Ch. 2.3 - Still the 1 (S). Consider the following sequence...Ch. 2.3 - Zeros and ones. Consider the following sequence of...Ch. 2.3 - Zeros, ones, and threes. Consider the following...Ch. 2.3 - A rough count. Using results discussed in this...Ch. 2.3 - Generating primes (H). Consider the list of...Ch. 2.3 - Generating primes II. Consider the list of...Ch. 2.3 - Floating in factors. What is the smallest natural...Ch. 2.3 - Lucky 13 factor. Suppose a certain number when...Ch. 2.3 - Remainder reminder (S). Suppose a certain number...Ch. 2.3 - Remainder roundup. Suppose a certain number when...Ch. 2.3 - Related remainders (H). Suppose we have two...Ch. 2.3 - Prime differences. Write out the first 15 primes...Ch. 2.3 - Minus two. Suppose we take a prime number greater...Ch. 2.3 - Prime neighbors. Does there exist a number n such...Ch. 2.3 - Perfect squares. A perfect square is a number that...Ch. 2.3 - Perfect squares versus primes. Using a calculator...Ch. 2.3 - Prime pairs. Suppose that p is a prime number...Ch. 2.3 - Remainder addition. Let A and B be two natural...Ch. 2.3 - Remainder multiplication. Let A and B be two...Ch. 2.3 - A prime-free gap (S). Find a run of six...Ch. 2.3 - Prime-free gaps. Using Mindscape 35, show that,...Ch. 2.3 - Three primes (ExH). Prove that it is impossible to...Ch. 2.3 - Prime plus three. Prove that if you take any prime...Ch. 2.3 - A small factor. Prove that if a number greater...Ch. 2.3 - Prime products (H). Suppose we make a number by...Ch. 2.3 - Seldom prime. Suppose that x is a natural number...Ch. 2.3 - A special pair of twins. A composite number x is...Ch. 2.3 - Special K p. A prime p satisfies the equation...Ch. 2.3 - Prob. 48MSCh. 2.3 - One real root (H). Find one value of x for which...Ch. 2.4 - A flashy timepiece. You own a very expensive watch...Ch. 2.4 - Living in the past. Your watch currently reads...Ch. 2.4 - Mod prods. Which number from 0 to 6 is equivalent...Ch. 2.4 - Prob. 4MSCh. 2.4 - A tower of mod power. Reduce 13 mod 11. Reduce 132...Ch. 2.4 - Hours and hours. The clock now reads 10:45. What...Ch. 2.4 - Days and days. Today is Saturday. What day of the...Ch. 2.4 - Months and months (H). It is now July. What month...Ch. 2.4 - Celestial seasonings (S). Which of the following...Ch. 2.4 - SpaghettiOs. Which of the following is the correct...Ch. 2.4 - Prob. 11MSCh. 2.4 - Tonic water. Which of the following is the correct...Ch. 2.4 - Real mayo (H). The following is the UPC for...Ch. 2.4 - Applesauce. The following is the UPC for Lucky...Ch. 2.4 - Grand Cru. The following is the UPC for Celis Ale...Ch. 2.4 - Mixed nuts. The following is the UPC for Planters...Ch. 2.4 - Blue chips. The following is the UPC for Garden of...Ch. 2.4 - Lemon. The following is the UPC for RealLemon...Ch. 2.4 - Decoding (S). A friend with lousy handwriting...Ch. 2.4 - Check your check. Find the bank code on your...Ch. 2.4 - Prob. 21MSCh. 2.4 - More bank checks (ExH). Determine the check digits...Ch. 2.4 - UPC your friends. Have a friend find a product...Ch. 2.4 - Whoops. A UPC for a product is Explain why the...Ch. 2.4 - Whoops again. A bank code is Explain why the...Ch. 2.4 - Mod remainders (S). Where would 129 be on a mod 13...Ch. 2.4 - More mod remainders. Where would 2015 be on a mod...Ch. 2.4 - Money orders. U.S. Postal Money Orders have a...Ch. 2.4 - Airline tickets. An airline ticket identification...Ch. 2.4 - UPS. United Parcel Service uses the same check...Ch. 2.4 - Check a code. U.S. Postal Money Order serial...Ch. 2.4 - ISBN-13. The 13-digit book identification number,...Ch. 2.4 - ISBN-13 check (H). Find the check digits for the...Ch. 2.4 - ISBN-13 error. The ISBN-13 978-4-1165-9105-4 is...Ch. 2.4 - Brush up your Shakespeare. Find a book containing...Ch. 2.4 - Mods and remainders. Use the Division Algorithm...Ch. 2.4 - Catching errors (H). Give some examples in which...Ch. 2.4 - Why three? In the UPC, why is 3 the number every...Ch. 2.4 - A mod surprise. For each number n from 1 to 4,...Ch. 2.4 - A prime magic trick. Pick a prime number and call...Ch. 2.4 - One congruence, two solutions. Find two different...Ch. 2.4 - Chinese remainder. Find one natural number x that...Ch. 2.4 - More remainders. Find one natural number z that...Ch. 2.4 - Quotient coincidence. Suppose x is a natural...Ch. 2.4 - Prob. 49MSCh. 2.5 - What did you say? The message below was encoded...Ch. 2.5 - Secret admirer. Use the scheme on page 99 to...Ch. 2.5 - Setting up secrets. Let p=7 and q=17. Are p and q...Ch. 2.5 - Second secret setup. Let p=5 and q=19. Are p and q...Ch. 2.5 - Secret squares. Reduce the following quantities:...Ch. 2.5 - Petit Fermat 5. Compute 24 (mod 5). Compute 44...Ch. 2.5 - Petit Fermat 7. Compute 46 (mod 7). Compute 56...Ch. 2.5 - Top secret (ExH). In our discussion, the two...Ch. 2.5 - Middle secret (H). In our discussion, the two...Ch. 2.5 - Prob. 10MSCh. 2.5 - Creating your code (S). Suppose you wish to devise...Ch. 2.5 - Using your code. Given the coding scheme you...Ch. 2.5 - Public secrecy. Using the List in Mindscape 12,...Ch. 2.5 - Going public. Using the list in Mindscape 12, with...Ch. 2.5 - Secret says (H). Using the list in Mindscape 12,...Ch. 2.5 - Big Fermat (S). Compute 5600 (mod 7). (Hint:...Ch. 2.5 - Big and powerful Fermat (ExH). Recall how...Ch. 2.5 - The value of information. How large should the...Ch. 2.5 - Something in common. Suppose that p is a prime...Ch. 2.5 - Faux pas Fermat. Compute 15 mod 6, 25 mod 6, 35...Ch. 2.5 - Breaking the code. If you could factor a large...Ch. 2.5 - Signing your name. Suppose you get a message that...Ch. 2.5 - Prob. 27MSCh. 2.5 - FOILed! FOIL the expression (a1)(q1). Suppose you...Ch. 2.5 - FOILed again! FOIL the expression (x1)(y1)....Ch. 2.5 - Secret primes. You know that p and q are primes...Ch. 2.5 - Prob. 31MSCh. 2.6 - A rational being. What is the definition of a...Ch. 2.6 - Fattened tractions. Reduce these overweight...Ch. 2.6 - Prob. 3MSCh. 2.6 - Decoding decimals. Show that each of the decimal...Ch. 2.6 - Odds and ends. Square the numbers from 1 to 12. Do...Ch. 2.6 - Irrational rationalization. We know that 2 ¡s...Ch. 2.6 - Rational rationalization. We know 2/5 and 7/3 are...Ch. 2.6 - Rational or not (ExH). For each of the following...Ch. 2.6 - Irrational or not. Determine if each of the...Ch. 2.6 - In Mindscapes 10-16, show that the value given is...Ch. 2.6 - In Mindscapes 10-16, show that the value given is...Ch. 2.6 - In Mindscapes 10-16, show that the value given is...Ch. 2.6 - In Mindscapes 10-16, show that the value given is...Ch. 2.6 - In Mindscapes 10-16, show that the value given is...Ch. 2.6 - In Mindscapes 10-16, show that the value given is...Ch. 2.6 - In Mindscapes 10-16, show that the value given is...Ch. 2.6 - An irrational exponent (H). Suppose that E is the...Ch. 2.6 - Another irrational exponent. Suppose that E is the...Ch. 2.6 - Still another exponent (ExH). Suppose that E is...Ch. 2.6 - Another rational exponent. Suppose that E is the...Ch. 2.6 - Rational exponent. Suppose that E is the number...Ch. 2.6 - Rational sums. Show that the sum of any two...Ch. 2.6 - Rational products. Show that the product of any...Ch. 2.6 - Root of a rational Show that (1/2) is irrational.Ch. 2.6 - Root of a rational (S). Show that (2/3) is...Ch. 2.6 - . Using the fact that is irrational, show that +3...Ch. 2.6 - 2. Using the fact that is irrational, show that 2...Ch. 2.6 - 2. Suppose that we know only that 2 is irrational....Ch. 2.6 - A rational in disguise. Show that the number (22)2...Ch. 2.6 - Prob. 30MSCh. 2.6 - More cube roots. Show that 33 is irrational.Ch. 2.6 - One-fourth root. Show that the fourth root of...Ch. 2.6 - Irrational sums (S). Does an irrational number...Ch. 2.6 - Irrational products (H). Does an irrational number...Ch. 2.6 - Irrational plus rational. Does an irrational...Ch. 2.6 - p. Show that for any prime number p,p ¡s an...Ch. 2.6 - pq. Show that, for any two different prime numbers...Ch. 2.6 - p+q. Show that, for any prime numbers p and q,p+q...Ch. 2.6 - 4. The square root of 4 is equal to 2, which is a...Ch. 2.6 - Sum or difference (H). Let a and b be any two...Ch. 2.6 - Rational x. Simplify the following expressions to...Ch. 2.6 - High 5. Suppose that x is a positive number...Ch. 2.6 - Dont be scared (H). Consider the scary equation....Ch. 2.6 - A hunt for irrationals. Find all solutions to the...Ch. 2.6 - A hunt for rationales. For any number x, the...Ch. 2.7 - X marks the X-act spot. On the number tine above,...Ch. 2.7 - Moving the point. Simplify each of the...Ch. 2.7 - Watch out for ones! Express 1/9 in decimal form....Ch. 2.7 - Real redundancy Suppose M=0.4999.... Then what...Ch. 2.7 - Being irrational. Explain what it means for a...Ch. 2.7 - Always, sometimes, never. A number with an...Ch. 2.7 - Square root of 5. The 5 has an unending decimal...Ch. 2.7 - A rational search (ExH). Find a rational number...Ch. 2.7 - Another rational search. Find a rational number...Ch. 2.7 - An Irrational search (H). Describe an irrational...Ch. 2.7 - Another irrational search. Describe an irrational...Ch. 2.7 - Your neighborhood. Suppose we tell you that we are...Ch. 2.7 - Another neighborhood. Suppose we tell you that we...Ch. 2.7 - In Mindscapes 14-16, express each fraction in its...Ch. 2.7 - In Mindscapes 14-16, express each fraction in its...Ch. 2.7 - In Mindscapes 14-16, express each fraction in its...Ch. 2.7 - In Mindscapes 17-25, express each number as a...Ch. 2.7 - In Mindscapes 17-25, express each number as a...Ch. 2.7 - In Mindscapes 17-25, express each number as a...Ch. 2.7 - In Mindscapes 17-25, express each number as a...Ch. 2.7 - In Mindscapes 17-25, express each number as a...Ch. 2.7 - In Mindscapes 17-25, express each number as a...Ch. 2.7 - In Mindscapes 17-25, express each number as a...Ch. 2.7 - In Mindscapes 17-25, express each number as a...Ch. 2.7 - In Mindscapes 17-25, express each number as a...Ch. 2.7 - Farey fractions. Let F be the collection of all...Ch. 2.7 - Even irrational. Show that the number...Ch. 2.7 - Odd irrational (H). Show that the number...Ch. 2.7 - A proof for . Suppose we look at the first one...Ch. 2.7 - Irrationals and zero. Is there an irrational...Ch. 2.7 - Irrational with 1s and 2s (S). Is it possible to...Ch. 2.7 - Irrational with 1s and some 2s. Is it possible to...Ch. 2.7 - Half steps. Suppose you are just a point and are...Ch. 2.7 - Half steps again (ExH). Suppose now that you are a...Ch. 2.7 - Cutting . Is it possible to cut up the interval...Ch. 2.7 - From infinite to finite. Find a real number that...Ch. 2.7 - Rationals (H). Show that, between any two...Ch. 2.7 - Irrationals. Show that, between any two different...Ch. 2.7 - Terminator. Show that if a rational number has a...Ch. 2.7 - Terminator II. Show that if the denominator of a...Ch. 2.7 - An unknown digit. Let x be a digit satisfying the...Ch. 2.7 - Prob. 46MSCh. 2.7 - Is y irrational? You decide to create the digits...Ch. 2.7 - Is z irrational? Follow the same construction as...Ch. 2.7 - Triple digits (H). Suppose a, b, and c are digits...
Knowledge Booster
Similar questions
- 5 (Moments of GARCH) For the GARCH(2,2) model rt = 0.2+0.25u1+0.05u-2 +0.30% / -1 +0.20% -2, find cov(rt). 0.0035 ut, ut = στει,στ =arrow_forward(14 points) Let S = {(x, y, z) | z = e−(x²+y²), x² + y² ≤ 1}. The surface is the graph of ze(+2) sitting over the unit disk.arrow_forwardDoor 87.5in to 47 living 44.75 Closet 96in Window ISS.Sin 48in Train Table 96in 48in 132:2 Windowarrow_forward
- Classify the singularities for the following functions at the given point. at a = (a) f(z) = 1 (2 sin z-1)² (b) f(z) = exp(4)-1 at 0 and at a = (c) f(z) = 1-cosh z at a=0 2 In the case of a pole, indicate the order of the pole and its residue.arrow_forwardDefinition of null hypothesis from the textbook Definition of alternative hypothesis from the textbook Imagine this: you suspect your beloved Chicken McNugget is shrinking. Inflation is hitting everything else, so why not the humble nugget too, right? But your sibling thinks you’re just being dramatic—maybe you’re just extra hungry today. Determined to prove them wrong, you take matters (and nuggets) into your own hands. You march into McDonald’s, get two 20-piece boxes, and head home like a scientist on a mission. Now, before you start weighing each nugget like they’re precious gold nuggets, let’s talk hypotheses. The average weight of nuggets as mentioned on the box is 16 g each. Develop your null and alternative hypotheses separately. Next, you weigh each nugget with the precision of a jeweler and find they average out to 15.5 grams. You also conduct a statistical analysis, and the p-value turns out to be 0.01. Based on this information, answer the following questions. (Remember,…arrow_forwardBusiness Discussarrow_forward
- Determine all functions f analytic in the open unit disc || < 1 which satisfy in addition f(0) = 1 and |f(z)|≥ 1 whenever || < 1. Justify your answer.arrow_forwardDeduce the Laurent expansion for f(z) = 22(2-3)2 in the annulus 0 < |z3|< 3.arrow_forwardWhat can you conclude about a complex-valued function f(z) that satisfies 1. f is complex differentiable everywhere 2. ƒ(z+1) = ƒ(z) for all z 3. For a fixed complex number a with nonzero imaginary part, f(z+a) = f(z) for all z ? Justify your answer. (Hint: Use Liouville's theorem.)arrow_forward
- 6. Solve the system of differential equations using Laplace Transforms: x(t) = 3x₁ (t) + 4x2(t) x(t) = -4x₁(t) + 3x2(t) x₁(0) = 1,x2(0) = 0arrow_forward3. Determine the Laplace Transform for the following functions. Show all of your work: 1-t, 0 ≤t<3 a. e(t) = t2, 3≤t<5 4, t≥ 5 b. f(t) = f(tt)e-3(-) cos 4τ drarrow_forward4. Find the inverse Laplace Transform Show all of your work: a. F(s) = = 2s-3 (s²-10s+61)(5-3) se-2s b. G(s) = (s+2)²arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage