Concept explainers
Interpretation:
Types of given reaction should be identified.
Concept introduction:
Electrophile (negative-charge loving): A molecule or ion that accepts a pair of electrons to make a new covalent bond is called an electrophile.
Electrophiles are neutral or positively charged species, having vacant orbitals and attracted electron towards itself.
Electrophilic substitution reactions: an electrophile replaces a functional group in a compound, which is typically, but not always, a hydrogen atom.
Electrophilic
Nucleophiles (positive-charge loving): A nucleophile is a more reactant species that affords a pair of electrons to the electrophile or electrophilic center and forms a new covalent bond.
The carbon or other hetero atom in a molecule which is bearing negative charge or lone pair of electron is called as nucleophiles.
Nucleophilic Substitution reaction: electron rich nucleophile attacks the positive or partially positive charge of an atom and replace a leaving group is called Nucleophilic Substitution reaction.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 23 Solutions
CHEMISTRY:ATOMS FIRST (LL)>CUSTOM PKG.<
- Can you solve the following problem and explainarrow_forwardThe sum of the numbers in the name of isA. 10; B. 13; C. 9; D. 11; E. none of the other answers is correct.arrow_forwardThe formula of methylcyclopentane isA. C6H13; B. C6H10; C. C6H8; D. C6H14; E. none of the other answersis correct.arrow_forward
- 13.84. Chlorine atoms react with methane, forming HCI and CH3. The rate constant for the reaction is 6.0 × 107 M¹ s¹ at 298 K. When the experiment was run at three other temperatures, the following data were collected: T (K) k (M-1 s-1) 303 6.5 × 107 308 7.0 × 107 313 7.5 x 107 a. Calculate the values of the activation energy and the frequency factor for the reaction. b. What is the value of the rate constant in the lower stratosphere, where T = 218 K?arrow_forwardMy Organic Chemistry textbook says about the formation of cyclic hemiacetals, "Such intramolecular reactions to form five- and six-membered rings are faster than the corresponding intermolecular reactions. The two reacting functional groups, in this case OH and C=O, are held in close proximity, increasing the probability of reaction."According to the book, the formation of cyclic hemiacetals occurs in acidic conditions. So my question is whether the carbonyl group in this reaction reacts first with the end alcohol on the same molecule or with the ethylene glycol. And, given the explanation in the book, if it reacts first with ethylene glycol before its own end alcohol, why would it? I don't need to know the final answer. I need to know WHY it would not undergo an intermolecular reaction prior to reacting with the ethylene glycol if that is the case. Please do not use an AI answer.arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Highlight in red each acidic location on the organic molecule at left. Highlight in blue each basic location on the organic molecule at right. Note for advanced students: we mean acidic or basic in the Brønsted-Lowry sense only. Cl N شیخ x Garrow_forwardQ4: Draw the mirror image of the following molecules. Are the molecules chiral? C/ F LL CI CH3 CI CH3 0 CI CH3 CI CH3 CH3arrow_forwardComplete combustion of a 0.6250 g sample of the unknown crystal with excess O2 produced 1.8546 g of CO2 and 0.5243 g of H2O. A separate analysis of a 0.8500 g sample of the blue crystal was found to produce 0.0465 g NH3. The molar mass of the substance was found to be about 310 g/mol. What is the molecular formula of the unknown crystal?arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)