
(a)
Interpretation:
Given acid-base reaction has to be completed and the direction of equilibrium has to be predicted.
Concept introduction:
According to the explanations by Bronsted-Lowry, if a species loses a proton then it is an acid whereas if a species receives one proton, then it is base.
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
Mixture of acid and base undergoes equilibrium reaction and it’s
Weak acids are more stable and less reactive, so equilibrium follows the direction of formation weak acids in a reaction.
Lesser the
(a)

Explanation of Solution
Given reaction is shown below,
According to the explanations by Bronsted-Lowry, if a species loses a proton then it is an acid whereas if a species receives one proton, then it is base. If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
Weak acid is more stable, equilibrium follows the direction of formation weak acids in a reaction. Long arrow indicates the direction where equilibrium favors.
Here, acetate anion is the weaker acid and equilibrium lies towards the right.
(b)
Interpretation:
Given acid-base reaction has to be completed and the direction of equilibrium has to be predicted.
Concept introduction:
According to the explanations by Bronsted-Lowry, if a species loses a proton then it is an acid whereas if a species receives one proton, then it is base.
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
Mixture of acid and base undergoes equilibrium reaction and it’s
Weak acids are more stable and less reactive, so equilibrium follows the direction of formation weak acids in a reaction.
Lesser the
(b)

Explanation of Solution
Given reaction is shown below,
According to the explanations by Bronsted-Lowry, if a species loses a proton then it is an acid whereas if a species receives one proton, then it is base. If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
Weak acid is more stable, equilibrium follows the direction of formation weak acids in a reaction. Long arrow indicates the direction where equilibrium favors.
Here, triethylammonium cation is the weaker acid and equilibrium lies towards the right.
(c)
Interpretation:
Given acid-base reaction has to be completed and the direction of equilibrium has to be predicted.
Concept introduction:
According to the explanations by Bronsted-Lowry, if a species loses a proton then it is an acid whereas if a species receives one proton, then it is base.
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
Mixture of acid and base undergoes equilibrium reaction and it’s
Weak acids are more stable and less reactive, so equilibrium follows the direction of formation weak acids in a reaction.
Lesser the
(c)

Explanation of Solution
Given reaction is shown below,
According to the explanations by Bronsted-Lowry, if a species loses a proton then it is an acid whereas if a species receives one proton, then it is base. If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
Weak acid is more stable, equilibrium follows the direction of formation weak acids in a reaction. Long arrow indicates the direction where equilibrium favors.
Here, phenyl acetylene is the weaker acid and equilibrium lies towards the left.
(d)
Interpretation:
Given acid-base reaction has to be completed and the direction of equilibrium has to be predicted.
Concept introduction:
According to the explanations by Bronsted-Lowry, if a species loses a proton then it is an acid whereas if a species receives one proton, then it is base.
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
Mixture of acid and base undergoes equilibrium reaction and it’s
Weak acids are more stable and less reactive, so equilibrium follows the direction of formation weak acids in a reaction.
Lesser the
(d)

Explanation of Solution
Given reaction is shown below,
According to the explanations by Bronsted-Lowry, if a species loses a proton then it is an acid whereas if a species receives one proton, then it is base. If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
Weak acid is more stable, equilibrium follows the direction of formation weak acids in a reaction. Long arrow indicates the direction where equilibrium favors.
Here,
(e)
Interpretation:
Given acid-base reaction has to be completed and the direction of equilibrium has to be predicted.
Concept introduction:
According to the explanations by Bronsted-Lowry, if a species loses a proton then it is an acid whereas if a species receives one proton, then it is base.
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
Mixture of acid and base undergoes equilibrium reaction and it’s
Weak acids are more stable and less reactive, so equilibrium follows the direction of formation weak acids in a reaction.
Lesser the
(e)

Explanation of Solution
Given reaction is shown below,
According to the explanations by Bronsted-Lowry, if a species loses a proton then it is an acid whereas if a species receives one proton, then it is base. If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
Weak acid is more stable, equilibrium follows the direction of formation weak acids in a reaction. Long arrow indicates the direction where equilibrium favors.
Here, triethylammonium chloride is the weaker acid and equilibrium lies towards the left.
(f)
Interpretation:
Given acid-base reaction has to be completed and the direction of equilibrium has to be predicted.
Concept introduction:
According to the explanations by Bronsted-Lowry, if a species loses a proton then it is an acid whereas if a species receives one proton, then it is base.
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
Mixture of acid and base undergoes equilibrium reaction and it’s
Weak acids are more stable and less reactive, so equilibrium follows the direction of formation weak acids in a reaction.
Lesser the
(f)

Explanation of Solution
Given reaction is shown below,
According to the explanations by Bronsted-Lowry, if a species loses a proton then it is an acid whereas if a species receives one proton, then it is base. If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
Weak acid is more stable, equilibrium follows the direction of formation weak acids in a reaction. Long arrow indicates the direction where equilibrium favors.
Here, 1-phenyl-2-propanammonium ion is the weaker acid and equilibrium lies towards the right.
(g)
Interpretation:
Given acid-base reaction has to be completed and the direction of equilibrium has to be predicted.
Concept introduction:
According to the explanations by Bronsted-Lowry, if a species loses a proton then it is an acid whereas if a species receives one proton, then it is base.
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
Mixture of acid and base undergoes equilibrium reaction and it’s
Weak acids are more stable and less reactive, so equilibrium follows the direction of formation weak acids in a reaction.
Lesser the
(g)

Explanation of Solution
Given reaction is shown below,
According to the explanations by Bronsted-Lowry, if a species loses a proton then it is an acid whereas if a species receives one proton, then it is base. If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
Weak acid is more stable, equilibrium follows the direction of formation weak acids in a reaction. Long arrow indicates the direction where equilibrium favors.
Here, amphetamine hydrochloride is the weaker acid and equilibrium lies towards the left.
(h)
Interpretation:
Given acid-base reaction has to be completed and the direction of equilibrium has to be predicted.
Concept introduction:
According to the explanations by Bronsted-Lowry, if a species loses a proton then it is an acid whereas if a species receives one proton, then it is base.
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
Mixture of acid and base undergoes equilibrium reaction and it’s
Weak acids are more stable and less reactive, so equilibrium follows the direction of formation weak acids in a reaction.
Lesser the
(h)

Explanation of Solution
Given reaction is shown below,
According to the explanations by Bronsted-Lowry, if a species loses a proton then it is an acid whereas if a species receives one proton, then it is base. If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
Weak acid is more stable, equilibrium follows the direction of formation weak acids in a reaction. Long arrow indicates the direction where equilibrium favors.
Here, water is the weaker acid and equilibrium lies towards the right.
Want to see more full solutions like this?
Chapter 23 Solutions
Organic Chemistry
- Would the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forwardThis organic molecule is dissolved in an acidic aqueous solution: OH OH A short time later sensitive infrared spectroscopy reveals the presence of a new C = O stretch absorption. That is, there must now be a new molecule present with at least one C = O bond. In the drawing area below, show the detailed mechanism that could convert the molecule above into the new molecule. Videos 849 Explanation Check C Click and drag to start dwing a structure. # 3 MAR 23 Add/Remove steparrow_forward||| 7:47 ull 57% ← Problem 19 of 48 Submit Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the product of this carbocation rearrangement. Include all lone pairs and charges as appropriate. H 1,2-alkyl shift +arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forwardBelow is the SN1 reaction of (S)-3-chlorocyclohexene and hydroxide (OH). Draw the missing curved arrows, lone pairs of electrons, and nonzero formal charges. In the third box, draw the two enantiomeric products that will be produced. 5th attempt Please draw all four bonds at chiral centers. Draw the two enantiomeric products that will be produced. Draw in any hydrogen at chiral centers. 1000 4th attempt Feedback Please draw all four bonds at chiral centers. 8. R5 HO: See Periodic Table See Hint H Cl Br Jid See Periodic Table See Hintarrow_forwardShow that a molecule with configuration π4 has a cylindrically symmetric electron distribution. Hint: Let the π orbitals be equal to xf and yf, where f is a function that depends only on the distance from the internuclear axis.arrow_forward(a) Verify that the lattice energies of the alkali metal iodides are inversely proportional to the distances between the ions in MI (M = alkali metal) by plotting the lattice energies given below against the internuclear distances dMI. Is the correlation good? Would a better fit be obtained by plotting the lattice energies as a function of (1 — d*/d)/d, as theoretically suggested, with d* = 34.5 pm? You must use a standard graphing program to plot the graph. It generates an equation for the line and calculates a correlation coefficient. (b) From the graph obtained in (a), estimate the lattice energy of silver iodide. (c) Compare the results of (b) with the experimental value of 886 kJ/mol. If they do not agree, explain the deviation.arrow_forwardCan I please get help with #3 & 4? Thanks you so much!arrow_forwardA solution consisting of 0.200 mol methylbenzene, C,H,CH,, in 500. g of nitrobenzene, CH,NO₂, freezes at 3.2°C. Pure nitrobenzene freezes at 6.0°C. The molal freezing point constant of nitrobenzene is _ °C/m. a) 2.8 b) 3.2 c) 5.6 d) 7.0 e) 14.0arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning


