Principles of Instrumental Analysis, 6th Edition
Principles of Instrumental Analysis, 6th Edition
6th Edition
ISBN: 9788131525579
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cenage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 23, Problem 23.24QAP
Interpretation Introduction

(a)

Interpretation:

The potential of the electrode with respect to a Ag/AgCl(sat’d) reference electrode after addition of different volumes of Cerium(IV) should be calculated.

Concept introduction:

Nernst equation gives the cell potential under non-standard conditions.

E=E02.303RTnFlogQ

E − cell potential

E0 − standard cell potential

R − universal gas constant

T − temperature in Kelvin

n − number of electrons transferred

F − Faraday constant

Q − Reaction quotient

Ecell=Ecathode0Eanode0

Expert Solution
Check Mark

Answer to Problem 23.24QAP

Volume of Ce4+, mL Ecell, V
5.00 0.712754
10.00 0.723179
15.00 0.730108
20.00 0.735787
24.00 0.739971
24.90 0.740897
25.00 0.741
40.00 0.75882
45.00 0.769244
49.00 0.791022
49.50 0.800055
49.60 0.802945
49.70 0.806663
49.80 0.811887
49.90 0.820784
49.95 0.829627
49.99 0.849708
50.00 0.907667
50.01 1.020361
50.05 1.063076
50.10 1.081059
50.20 1.098961
50.30 1.109413
50.40 1.116822
50.50 1.122568
51.00 1.140405
55.00 1.181796
60.00 1.199619
75.00 1.223178
90.00 1.235262

Explanation of Solution

The electrode potentials for half cell reactions are as follows:

Ce4++ e  Ce3+    E0=1.44 V

NO3. + 3 H+ + 2e  HNO2 + H2O    E0=0.94 V

AgCl(s) + e  Ag(s) + Cl     E0=0.199

The overall reaction will be:

Overall reaction: 2 Ce4+ + HNO2 + H2 2 Ce3+ + NO3 + 3 H+

Eeq=ECe4+/Ce3+00.05921log[Ce3+][Ce4+](1)Eeq=ENO3-/HNO200.05922log[HNO2][NO3][H+]3Eeq=2ENO3-/HNO200.0592log[HNO2][NO3][H+]3(2)

The system is at equilibrium all time. So, the electrode potential for the two half-cell reactions are always equal

(1) + (2) x 2

3Eeq=ECe4+/Ce3+0+2ENO3-/HNO200.0592log[Ce3+][HNO2][Ce4+][NO3][H+]3

Since, the hydrogen ion concentration is at 1.00 M throughout the titration,one can simplify the above equation.

3Eeq=ECe4+/Ce3+0+2ENO3-/HNO200.0592log[Ce3+][HNO2][Ce4+][NO3]

At equivalence point, [Ce4+]=2[HNO2] and [Ce3+]=2 [NO3]

So,

3Eeq=ECe4+/Ce3+0+2ENO3-/HNO20Eeq=ECe4+/Ce3+0+2ENO3-/HNO203

Potential before the equivalence point can be determined by applying the Nernst equation for HNO2/NO3- half-cell reaction. And potential after the equivalence point can be determined by applying Nernst equation for the Ce4+/Ce3+ half-cell reaction.

Initial concentration of HNO2 = 0.05×40.0075.00=0.026667 M

Volume of Ce4+ spent at the equivalence point = 0.026667 mol1000 mL×75.00 mL×2 mol1 mol×1000 mL0.0800 mol=50.00 mL

When 5.00 mL of Ce4+ solution is added,

Concentration of NO3- = 0.0800 mol1000 mL×5.00 mL×1 mol2 mol×1000 mL(75.00+5.00)mL

= 0.0025 M

Concentration of HNO2 left = 0.026667 mol1000 mL×75.00 mL - 0.0800 mol1000 mL×5.00 mL×1 mol2 mol(75.00+5.00) mL×1000 mL

= 0.0225 M

When 50.01 mL of Ce4+ added

Concentration of Ce4+ = 0.0800 mol1000 mL×50.01 mL - 0.026667 mol1000 mL×75.00 mL×2 mol1 mol(75.00+50.01) mL×1000 mL

= 5.999×106 M

Concentration of Ce3+ = 0.026667 mol1000 mL×75.00 mL×2 mol1 mol(75.00+50.01) mL×1000 mL

= 0.031997 M

likewise, one can calculate the concentrations of the species when other volumes of Ce4+ added. And then the electrode potential can be calculated. The potential of the indicator electrode with respect to a Ag/AgCl reference electrode can be calculated by subtracting the Ag/AgCl standard electrode potential from the electrode potential for the redox reaction calculated.

Volume of Ce4+, mL [NO3-] [HNO2] [Ce3+] [Ce4+] Ecell, V
5.00 0.0025 0.0225     0.712754
10.00 0.004705882 0.018824     0.723179
15.00 0.006666667 0.015556     0.730108
20.00 0.008421053 0.012632     0.735787
24.00 0.00969697 0.010505     0.739971
24.90 0.00996997 0.01005     0.740897
25.00 0.01 0.01     0.741
40.00 0.013913043 0.003478     0.75882
45.00 0.015 0.001667     0.769244
49.00 0.015806452 0.000323     0.791022
49.50 0.015903614 0.000161     0.800055
49.60 0.015922953 0.000129     0.802945
49.70 0.015942261 9.64E-05     0.806663
49.80 0.015961538 6.43E-05     0.811887
49.90 0.015980785 3.22E-05     0.820784
49.95 0.015990396 1.62E-05     0.829627
49.99 0.01599808 3.4E-06     0.849708
50.00         0.907667
50.01     0.031998 5.99952E-06 1.020361
50.05     0.031988 3.15874E-05 1.063076
50.10     0.031975 6.35492E-05 1.081059
50.20     0.031949 0.000127396 1.098961
50.30     0.031924 0.000191141 1.109413
50.40     0.031898 0.000254785 1.116822
50.50     0.031873 0.000318327 1.122568
51.00     0.031746 0.000634524 1.140405
55.00     0.03077 0.003076538 1.181796
60.00     0.02963 0.005925556 1.199619
75.00     0.026667 0.013333 1.223178
90.00     0.024243 0.019393636 1.235262
Interpretation Introduction

(b)

Interpretation:

A titration curve should be constructed

Concept introduction:

Potentiometric titration is similar to direct redox titrations but in potentiometric titrations no indicator is used. Instead, the potential is measured during the titration to obtain the equivalence point.

Expert Solution
Check Mark

Answer to Problem 23.24QAP

Principles of Instrumental Analysis, 6th Edition, Chapter 23, Problem 23.24QAP , additional homework tip  1

Explanation of Solution

The dependent variable is the indicator electrode potential and the independent variable is volume of Ce4+ solution added.

Principles of Instrumental Analysis, 6th Edition, Chapter 23, Problem 23.24QAP , additional homework tip  2

Interpretation Introduction

(c)

Interpretation:

A first and second derivative curve for the data should be generated.

Concept introduction:

The first derivative curve of the potentiometric titration is plotted between ΔEΔV and average volume of titrant added. The second derivative curve is plotted between (ΔE/ΔV)ΔV and average volume of titrant added. By generating derivative curved one can obtain the equivalence point accurately.

Expert Solution
Check Mark

Answer to Problem 23.24QAP

First derivative curve:

Principles of Instrumental Analysis, 6th Edition, Chapter 23, Problem 23.24QAP , additional homework tip  3

Second derivative curve:

Principles of Instrumental Analysis, 6th Edition, Chapter 23, Problem 23.24QAP , additional homework tip  4

Explanation of Solution

ΔE ΔV ΔE/ΔV Vave Δ(ΔE/ΔV) Δ(ΔV) Δ(ΔE/ΔV)/Δ(ΔV) Vave
               
0.010425 5 0.002085 7.5        
0.006929 5 0.001386 12.5 -0.0006992 5 -0.00013984 10
0.005679 5 0.001136 17.5 -0.00025 5 -5E-05 15
0.004184 4 0.001046 22 -8.98E-05 4.5 -1.99556E-05 19.75
0.000926 0.9 0.001029 24.45 -1.71111E-05 2.45 -6.98413E-06 23.225
0.000103 0.1 0.00103 24.95 1.11111E-06 0.5 2.22222E-06 24.7
0.01782 15 0.001188 32.5 0.000158 7.55 2.09272E-05 28.725
0.010424 5 0.002085 42.5 0.0008968 10 8.968E-05 37.5
0.021778 4 0.005444 47 0.0033597 4.5 0.0007466 44.75
0.009033 0.5 0.018066 49.25 0.0126215 2.25 0.005609556 48.125
0.00289 0.1 0.0289 49.55 0.010834 0.3 0.036113333 49.4
0.003718 0.1 0.03718 49.65 0.00828 0.1 0.0828 49.6
0.005224 0.1 0.05224 49.75 0.01506 0.1 0.1506 49.7
0.008897 0.1 0.08897 49.85 0.03673 0.1 0.3673 49.8
0.008843 0.05 0.17686 49.925 0.08789 0.075 1.171866667 49.8875
0.020081 0.04 0.502025 49.97 0.325165 0.045 7.225888889 49.9475
0.057959 0.01 5.7959 49.995 5.293875 0.025 211.755 49.9825
0.112694 0.01 11.2694 50.005 5.4735 0.01 547.35 50
0.042715 0.04 1.067875 50.03 -10.201525 0.025 -408.061 50.0175
0.017983 0.05 0.35966 50.075 -0.708215 0.045 -15.73811111 50.0525
0.017902 0.1 0.17902 50.15 -0.18064 0.075 -2.408533333 50.1125
0.010452 0.1 0.10452 50.25 -0.0745 0.1 -0.745 50.2
0.007409 0.1 0.07409 50.35 -0.03043 0.1 -0.3043 50.3
0.005746 0.1 0.05746 50.45 -0.01663 0.1 -0.1663 50.4
0.017837 0.5 0.035674 50.75 -0.021786 0.3 -0.07262 50.6
0.041391 4 0.010348 53 -0.02532625 2.25 -0.011256111 51.875
0.017823 5 0.003565 57.5 -0.00678315 4.5 -0.001507367 55.25
0.023559 15 0.001571 67.5 -0.001994 10 -0.0001994 62.5
0.012084 15 0.000806 82.5 -0.000765 15 -5.1E-05 75

First derivative curve:

Principles of Instrumental Analysis, 6th Edition, Chapter 23, Problem 23.24QAP , additional homework tip  5

Second derivative curve:

Principles of Instrumental Analysis, 6th Edition, Chapter 23, Problem 23.24QAP , additional homework tip  6

The volume at which the second-derivative curve cross zero correspond to the theoretical equivalence point. Theoretical equivalence point is 50.00 mL.At the maximum of the peak in the first derivative curve has a slope of zero. So, in the second derivative curve crosses the x axis at the point, corresponding to the equivalence point.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Don't used Ai solution
Don't used Ai solution
Please correct answer and don't used hand raiting
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning