ORGANIC CHEMISTRY W/OWL
ORGANIC CHEMISTRY W/OWL
9th Edition
ISBN: 9781305717527
Author: McMurry
Publisher: CENGAGE C
Question
Book Icon
Chapter 22.SE, Problem 43AP
Interpretation Introduction

a) Ethyl pentanoate

Interpretation:

Whether ethyl pentanoate can be prepared by malonic ester synthesis is to be stated. If so the alkyl halide to be used is to be stated.

Concept introduction:

Malonic ester synthesis is used to prepare carboxylic acids from alkyl halides. The ester is converted into its enolate ion which then attacks the alkyl halide. Hydrolysis and decarboxylation of the alkylated product yield the carboxylic acid which has two carbon extra than the alkyl halide. The acid can then be converted into ester by treating with ethanol in the presence of HCl.

To state:

Whether ethyl pentanoate can be prepared by malonic ester synthesis and to indicate the alkyl halide to be used.

Interpretation Introduction

b) Ethyl 3-methylbutanoate

Interpretation:

Whether ethyl 3-methylbutaonate can be prepared by malonic ester synthesis is to be stated. If so the alkyl halide to be used is to be stated.

Concept introduction:

Malonic ester synthesis is used to prepare carboxylic acids from alkyl halides. The ester is converted into its enolate ion which then attacks the alkyl halide. Hydrolysis and decarboxylation of the alkylated product yield the carboxylic acid which has two carbon extra than the alkyl halide. The acid can then be converted into ester by treating with ethanol in the presence of HCl.

To state:

Whether ethyl 3-methylbutanoate can be prepared by malonic ester synthesis and to indicate the alkyl halide to be used.

Interpretation Introduction

c) Ethyl 2-methylbutanoate

Interpretation:

Whether ethyl 2-methylbutanoate can be prepared by malonic ester synthesis is to be stated. If so the alkyl halide to be used is to be stated.

Concept introduction:

Malonic ester synthesis is used to prepare carboxylic acids from alkyl halides. The ester is converted into its enolate ion which then attacks the alkyl halide. Hydrolysis and decarboxylation of the alkylated product yield the carboxylic acid which has two carbon extra than the alkyl halide. The acid can then be converted into ester by treating with ethanol in the presence of HCl.

To state:

Whether ethyl 2-methylbutanoate can be prepared by malonic ester synthesis and to indicate the alkyl halide to be used.

Interpretation Introduction

d) Ethyl 2,2-dimethylpropanoate

Interpretation:

Whether ethyl 2,2-dimethylpropanoate can be prepared by malonic ester synthesis is to be stated. If so the alkyl halide to be used is to be stated.

Concept introduction:

Malonic ester synthesis is used to prepare carboxylic acids from alkyl halides. The ester is converted into its enolate ion which then attacks the alkyl halide. Hydrolysis and decarboxylation of the alkylated product yield the carboxylic acid which has two carbon extra than the alkyl halide. The acid can then be converted into ester by treating with ethanol in the presence of HCl.

To state:

Whether ethyl 2,2-dimethylpropanoate can be prepared by malonic ester synthesis and to indicate the alkyl halide to be used.

Blurred answer
Students have asked these similar questions
2. Predict the NMR spectra for each of these two compounds by listing, in the NMR tables below, the chemical shift, the splitting, and the number of hydrogens associated with each predicted peak. Sort the peaks from largest chemical shift to lowest. **Not all slots must be filled** Peak Chemical Shift (d) 5.7 1 Multiplicity multiplate .......... 5.04 double of doublet 2 4.98 double of doublet 3 4.05 doublet of quartet 4 5 LO 3.80 quartet 1.3 doublet 6 Peak Chemical Shift (d) Multiplicity
Interpreting NMR spectra is a skill that often requires some amount of practice, which, in turn, necessitates access to a collection of NMR spectra. Beyond Labz Organic Synthesis and Organic Qualitative Analysis have spectral libraries containing over 700 1H NMR spectra. In this assignment, you will take advantage of this by first predicting the NMR spectra for two closely related compounds and then checking your predictions by looking up the actual spectra in the spectra library. After completing this assignment, you may wish to select other compounds for additional practice. 1. Write the IUPAC names for the following two structures: Question 2 Question 3 2. Predict the NMR spectra for each of these two compounds by listing, in the NMR tables below, the chemical shift, the splitting, and the number of hydrogens associated with each predicted peak. Sort the peaks from largest chemical shift to lowest. **Not all slots must be filled**
11:14 ... worksheets.beyondlabz.com 3. To check your predictions, click this link for Interpreting NMR Spectra 1. You will see a list of all the - compounds in the spectra library in alphabetical order by IUPAC name. Hovering over a name in the list will show the structure on the chalkboard. The four buttons on the top of the Spectra tab in the tray are used to select the different spectroscopic techniques for the selected compound. Make sure the NMR button has been selected. 4. Scroll through the list of names to find the names for the two compounds you have been given and click on the name to display the NMR spectrum for each. In the NMR tables below, list the chemical shift, the splitting, and the number of hydrogens associated with each peak for each compound. Compare your answers to your predictions. **Not all slots must be filled** Peak Chemical Shift (d) Multiplicity 1 2 3 4 5

Chapter 22 Solutions

ORGANIC CHEMISTRY W/OWL

Ch. 22.7 - Draw a resonance structure of the acetonitrile...Ch. 22.7 - Why do you suppose ketone halogenations in acidic...Ch. 22.7 - Prob. 13PCh. 22.7 - Prob. 14PCh. 22.7 - Prob. 15PCh. 22.7 - Prob. 16PCh. 22.SE - Prob. 17VCCh. 22.SE - Prob. 18VCCh. 22.SE - Prob. 19VCCh. 22.SE - Prob. 20MPCh. 22.SE - Predict the product(s) and provide the mechanism...Ch. 22.SE - Predict the product(s) and provide the mechanism...Ch. 22.SE - Prob. 23MPCh. 22.SE - In the Hell–Volhard–Zelinskii reaction, only a...Ch. 22.SE - Prob. 25MPCh. 22.SE - Nonconjugated , -unsaturated ketones, such as...Ch. 22.SE - Prob. 27MPCh. 22.SE - Using curved arrows, propose a mechanism for the...Ch. 22.SE - Prob. 29MPCh. 22.SE - One of the later steps in glucose biosynthesis is...Ch. 22.SE - The Favorskii reaction involves treatment of an...Ch. 22.SE - Treatment of a cyclic ketone with diazomethane is...Ch. 22.SE - Prob. 33MPCh. 22.SE - Amino acids can be prepared by reaction of alkyl...Ch. 22.SE - Amino acids can also be prepared by a two-step...Ch. 22.SE - Heating carvone with aqueous sulfuric acid...Ch. 22.SE - Identify all the acidic hydrogens (pKa 25) in the...Ch. 22.SE - Rank the following compounds in order of...Ch. 22.SE - Prob. 39APCh. 22.SE - Base treatment of the following , -unsaturated...Ch. 22.SE - Prob. 41APCh. 22.SE - Prob. 42APCh. 22.SE - Prob. 43APCh. 22.SE - Which, if any, of the following compounds can be...Ch. 22.SE - Prob. 45APCh. 22.SE - Prob. 46APCh. 22.SE - Prob. 47APCh. 22.SE - How might you convert geraniol into either ethyl...Ch. 22.SE - Prob. 49APCh. 22.SE - One way to determine the number of acidic...Ch. 22.SE - Prob. 51APCh. 22.SE - Prob. 52APCh. 22.SE - Prob. 53APCh. 22.SE - Prob. 54APCh. 22.SE - Prob. 55APCh. 22.SE - Prob. 56APCh. 22.SE - All attempts to isolate primary and secondary...Ch. 22.SE - How would you synthesize the following compounds...Ch. 22.SE - Prob. 59APCh. 22.SE - Prob. 60APCh. 22.SE - Prob. 61APCh. 22.SE - Prob. 62APCh. 22.SE - As far back as the 16th century, South American...Ch. 22.SE - The key step in a reported laboratory synthesis of...Ch. 22.SE - Prob. 65AP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305580350
    Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
    Publisher:Cengage Learning
    Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305080485
    Author:John E. McMurry
    Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning