Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22.7, Problem 22.4QQ
Consider the magnetic field due to the current in the wire shown in Figure 22.24. Rank the points A, B, and C in terms of magnitude of the magnetic field that is due to the current in just the length element
Figure 22.24 (Quick Quiz 22.4) Where is the magnetic field the greatest?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 22 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 22.2 - An electron moves in the plane of this paper...Ch. 22.3 - A charged particle is moving perpendicular to a...Ch. 22.5 - A wire carries current in the plane of this paper...Ch. 22.7 - Consider the magnetic field due to the current in...Ch. 22.8 - Prob. 22.5QQCh. 22.9 - Figure 22.30 (Quick Quiz 22.6) Four closed paths...Ch. 22.9 - Prob. 22.7QQCh. 22.10 - Consider a solenoid that is very long compared...Ch. 22 - Prob. 1OQCh. 22 - What creates a magnetic field? More than one...
Ch. 22 - A charged particle is traveling through a uniform...Ch. 22 - A proton moving horizontally enters a region where...Ch. 22 - Two long, parallel wires each carry the same...Ch. 22 - Two long, straight wires cross each other at a...Ch. 22 - Prob. 7OQCh. 22 - Prob. 8OQCh. 22 - Answer each question yes or no. (a) Is it possible...Ch. 22 - A long, straight wire carries a current I (Fig....Ch. 22 - A thin copper rod 1.00 m long has a mass of 50.0...Ch. 22 - A magnetic field exerts a torque on each of the...Ch. 22 - Two long, parallel wires carry currents of 20.0 A...Ch. 22 - Prob. 14OQCh. 22 - A long solenoid with closely spaced turns carries...Ch. 22 - Solenoid A has length L and N turns, solenoid B...Ch. 22 - Prob. 1CQCh. 22 - Prob. 2CQCh. 22 - Prob. 3CQCh. 22 - Prob. 4CQCh. 22 - Prob. 5CQCh. 22 - Prob. 6CQCh. 22 - Prob. 7CQCh. 22 - Imagine you have a compass whose needle can rotate...Ch. 22 - Prob. 9CQCh. 22 - Can a constant magnetic field set into motion an...Ch. 22 - Prob. 11CQCh. 22 - Prob. 12CQCh. 22 - Prob. 13CQCh. 22 - Prob. 14CQCh. 22 - A proton travels with a speed of 3.00 106 m/s at...Ch. 22 - Determine the initial direction of the deflection...Ch. 22 - An electron is accelerated through 2.40 103 V...Ch. 22 - Prob. 4PCh. 22 - Prob. 5PCh. 22 - Prob. 6PCh. 22 - Prob. 7PCh. 22 - Prob. 8PCh. 22 - Review. An electron moves in a circular path...Ch. 22 - A cosmic-ray proton in interstellar space has an...Ch. 22 - Prob. 11PCh. 22 - Prob. 12PCh. 22 - Prob. 13PCh. 22 - Prob. 14PCh. 22 - Consider the mass spectrometer shown schematically...Ch. 22 - Prob. 16PCh. 22 - The picture tube in an old black-and-white...Ch. 22 - Prob. 18PCh. 22 - Prob. 19PCh. 22 - In Figure P22.20, the cube is 40.0 cm on each...Ch. 22 - Prob. 21PCh. 22 - Prob. 22PCh. 22 - A wire 2.80 m in length carries a current of 5.00...Ch. 22 - A current loop with magnetic dipole moment is...Ch. 22 - A rectangular coil consists of N = 100 closely...Ch. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - Calculate the magnitude of the magnetic field at a...Ch. 22 - An infinitely long wire carrying a current I is...Ch. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - One long wire carries current 30.0 A to the left...Ch. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - Prob. 36PCh. 22 - Prob. 37PCh. 22 - 3. In Niels Bohr’s 1913 model of the hydrogen...Ch. 22 - Review. In studies of the possibility of migrating...Ch. 22 - Prob. 40PCh. 22 - Prob. 41PCh. 22 - Prob. 42PCh. 22 - In Figure P22.43, the current in the long,...Ch. 22 - Prob. 44PCh. 22 - Prob. 45PCh. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - A packed bundle of 100 long, straight, insulated...Ch. 22 - Prob. 49PCh. 22 - Prob. 50PCh. 22 - Prob. 51PCh. 22 - Prob. 52PCh. 22 - A long, straight wire lies on a horizontal table...Ch. 22 - Prob. 54PCh. 22 - A single-turn square loop of wire, 2.00 cm on each...Ch. 22 - Prob. 56PCh. 22 - A long solenoid that has 1 000 turns uniformly...Ch. 22 - A solenoid 10.0 cm in diameter and 75.0 cm long is...Ch. 22 - Prob. 59PCh. 22 - In Niels Bohr’s 1913 model of the hydrogen atom,...Ch. 22 - Prob. 61PCh. 22 - Prob. 62PCh. 22 - Prob. 63PCh. 22 - Prob. 64PCh. 22 - Prob. 65PCh. 22 - The Hall effect finds important application in the...Ch. 22 - Prob. 67PCh. 22 - Prob. 68PCh. 22 - Prob. 69PCh. 22 - Prob. 70PCh. 22 - Assume the region to the right of a certain plane...Ch. 22 - Prob. 72PCh. 22 - Prob. 73PCh. 22 - Prob. 74PCh. 22 - Prob. 75PCh. 22 - Review. Rail guns have been suggested for...Ch. 22 - Prob. 77PCh. 22 - Prob. 78PCh. 22 - Prob. 79PCh. 22 - Prob. 80PCh. 22 - Prob. 81P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electron in a TV CRT moves with a speed of 6.0107 m/s, in a direction perpendicular to Earth's field, which has a strength of 5.0105 T. (a) What strength electric field must be applied perpendicular to the Earth’s field to make the election moves in a straight line? (b) If this is done between plates separated by 1.00 cm, what is the voltage applied? (Note that TVs are usually surrounded by a ferromagnetic material to shield against external magnetic fields and avoid the need for such a collection,)arrow_forwardOne long wire carries current 30.0 A to the left along the x axis. A second long wire carries current 50.0 A to the right along the line (y = 0.280 m, z = 0). (a) Where in the plane of the two wires is the total magnetic field equal to zero? (b) A particle with a charge of 2.00 C is moving with a velocity of 150iMm/s along the line (y = 0.100 m, z = 0). Calculate the vector magnetic force acting on the particle. (c) What If? A uniform electric field is applied to allow this particle to pass through this region undetected. Calculate the required vector electric field.arrow_forward(a) An oxygen16 ion with a mass at 2.661026kg travels at 5.00106m/s perpendicular to a 1.20T magnetic field, which makes it move in a circular arc with a 0.231-m radius. What positive charge is on the ion? (b) What is the radio of this charge to the charge of an electron? (c) Discuss why the radio found in (b) should be an integer.arrow_forward
- Determine the initial direction of the deflection of charged particles as they enter the magnetic fields as shown in Figure P22.2. Figure P22.2.arrow_forwardA circular loop of wire of area 10 cm2 carries a current of 25 A. At a particular instant, the loop lies in the xy-plane and is subjected to a magnetic field B=(2.0i+6.0j+8.0k)103T . As viewed from above the xy-plane, the current is circulating clockwise. (a) What is the magnetic dipole moment of the current loop? (b) At this instant, what is the magnetic torque on the loop?arrow_forwardTwo long wires, one of which has a semicircular tend of radius R, are positioned as shown in the accompanying figure. If both wires carry a current I, how far apart must then parallel sections be so that the net magnetic field at P is zero? Does the current in the straight wire flow up or down?arrow_forward
- At a particular instant an electron is traveling west to east with a kinetic energy of 10 keV. Earth's magnetic field has a horizontal component of 1.8105 T north and a vertical component of 5.0105 T down. (a) What is the path of the election? (b) What is the radius of curvature of the path?arrow_forward(a) A proton moving with velocity v=ii experiences a magnetic force F=Fij. Explain what you can and cannot infer about B from this information. (b) What If? In terms of Fi, what would be the force on a proton in the same field moving with velocity v=ii? (c) What would be the force on an electron in the same field moving with velocity v=ii?arrow_forwardAn alpha-particle ( m=6.641027kg , q=3.21019C ) travels in a circular path of radius 25 cm in a uniform magnetic field of magnitude 1.5 T. (a) What is the speed of the particle? (b) What is the kinetic energy in electron-volts? (c) Through what potential difference must the particle be accelerated in order to give it this kinetic energy?arrow_forward
- Unreasonable results A charged particle having mass 6.641027kg (that of a helium atom) moving at 8.70105m/s perpendicular to a 1.50-T magnetic field travels in a circular path of radius 16.0 mm. (a) What is the charge of the particle? (b) What is unreasonable about this result? (c) Which assumptions are responsible?arrow_forwardAn electron is accelerated through 2.40 103 V from rest and then enters a uniform 1.70-T magnetic field. What are (a) the maximum and (b) the minimum values of the magnetic force this particle experiences?arrow_forward(a)What is the angle between a wire carrying an 8.00-A current and the 1.20-T field It Is in if 50.0 cm of the wire experiences a magnetic force of 2.40 N? (b) What is the force on the wire If It Is rotated to make an angle of 90° with the field?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY