Biochemistry
Biochemistry
6th Edition
ISBN: 9781305577206
Author: Reginald H. Garrett, Charles M. Grisham
Publisher: Cengage Learning
Question
Book Icon
Chapter 22, Problem 8P
Interpretation Introduction

(a)

Interpretation:

The effects of increasing the concentration of tissue fructose-1,6-bisphosphate on the rates of gluconeogenesis and glycogen metabolism should be explained.

Concept Introduction:

Most of the reactions in Glycolysis and Gluconeogenesis reactions are taken place in the cytosol. Therefore, unless there is a metabolic regulation, glycolytic degradation of glucose and gluconeogenic synthesis of glucose will occur simultaneously without a benefit to the cell with huge consumption of ATP. This scenario is controlled by a reciprocal control system which inhibits glycolysis when gluconeogenesis is active and vice versa.

Glucose produced by glycogen metabolism is also an energy source for muscle contraction. Regulation of glycogen metabolism is also a reciprocal control of the two-enzyme glycogen phosphorylase and glycogen synthase. Regulation is achieved via both allosteric regulation and covalent modification.

Interpretation Introduction

(b)

Interpretation:

The effects of increasing the concentration of blood glucose on the rates of gluconeogenesis and glycogen metabolism should be explained.

Concept Introduction:

Most of the reactions in Glycolysis and Gluconeogenesis reactions are taken place in the cytosol. Therefore, unless there is a metabolic regulation, glycolytic degradation of glucose and gluconeogenic synthesis of glucose will occur simultaneously without a benefit to the cell with huge consumption of ATP. This scenario is controlled by a reciprocal control system which inhibits glycolysis when gluconeogenesis is active and vice versa.

Glucose produced by glycogen metabolism is also an energy source for muscle contraction. Regulation of glycogen metabolism is also a reciprocal control of the two enzyme glycogen phosphorylase and glycogen synthase. Regulation is achieved via both allosteric regulation and covalent modification.

Interpretation Introduction

(c)

To Explain:

The effects of increasing the concentration of blood insulin on the rates of gluconeogenesis and glycogen metabolism should be explained.

Introduction:

Most of the reactions in Glycolysis and Gluconeogenesis reactions are taken place in the cytosol. Therefore, unless there is a metabolic regulation, glycolytic degradation of glucose and gluconeogenic synthesis of glucose will occur simultaneously without a benefit to the cell with huge consumption of ATP. This scenario is controlled by a reciprocal control system which inhibits glycolysis when gluconeogenesis is active and vice versa.

Glucose produced by glycogen metabolism is also an energy source for muscle contraction. Regulation of glycogen metabolism is also a reciprocal control of the two enzyme glycogen phosphorylase and glycogen synthase. Regulation is achieved via both allosteric regulation and covalent modification.

Interpretation Introduction

(d)

To Explain:

The effects of increasing the amount of blood glucagon on the rates of gluconeogenesis and glycogen metabolism should be explained.

Introduction:

Most of the reactions in Glycolysis and Gluconeogenesis reactions are taken place in the cytosol. Therefore, unless there is a metabolic regulation, glycolytic degradation of glucose and gluconeogenic synthesis of glucose will occur simultaneously without a benefit to the cell with huge consumption of ATP. This scenario is controlled by a reciprocal control system which inhibits glycolysis when gluconeogenesis is active and vice versa.

Glucose produced by glycogen metabolism is also an energy source for muscle contraction. Regulation of glycogen metabolism is also a reciprocal control of the two enzyme glycogen phosphorylase and glycogen synthase. Regulation is achieved via both allosteric regulation and covalent modification.

Interpretation Introduction

(e)

Interpretation:

The effects of decreasing levels of tissue ATP on the rates of gluconeogenesis and glycogen metabolism should be explained.

Concept Introduction:

Most of the reactions in Glycolysis and Gluconeogenesis reactions are taken place in the cytosol. Therefore, unless there is a metabolic regulation, glycolytic degradation of glucose and gluconeogenic synthesis of glucose will occur simultaneously without a benefit to the cell with huge consumption of ATP. This scenario is controlled by a reciprocal control system which inhibits glycolysis when gluconeogenesis is active and vice versa.

Glucose produced by glycogen metabolism is also an energy source for muscle contraction. Regulation of glycogen metabolism is also a reciprocal control of the two enzyme glycogen phosphorylase and glycogen synthase. Regulation is achieved via both allosteric regulation and covalent modification.

Interpretation Introduction

(f)

Interpretation:

The effects of increasing the concentration of tissue AMP on the rates of gluconeogenesis and glycogen metabolism should be explained.

Concept Introduction:

Most of the reactions in Glycolysis and Gluconeogenesis reactions are taken place in the cytosol. Therefore, unless there is a metabolic regulation, glycolytic degradation of glucose and gluconeogenic synthesis of glucose will occur simultaneously without a benefit to the cell with huge consumption of ATP. This scenario is controlled by a reciprocal control system which inhibits glycolysis when gluconeogenesis is active and vice versa.

Glucose produced by glycogen metabolism is also an energy source for muscle contraction. Regulation of glycogen metabolism is also a reciprocal control of the two enzyme glycogen phosphorylase and glycogen synthase. Regulation is achieved via both allosteric regulation and covalent modification.

Interpretation Introduction

(g)

Interpretation:

The effects of decreasing the concentration of fructose-6-phosphate on the rates of gluconeogenesis and glycogen metabolism should be explained.

Concept Introduction:

Most of the reactions in Glycolysis and Gluconeogenesis reactions are taken place in the cytosol. Therefore, unless there is a metabolic regulation, glycolytic degradation of glucose and gluconeogenic synthesis of glucose will occur simultaneously without a benefit to the cell with huge consumption of ATP. This scenario is controlled by a reciprocal control system which inhibits glycolysis when gluconeogenesis is active and vice versa.

Glucose produced by glycogen metabolism is also an energy source for muscle contraction. Regulation of glycogen metabolism is also a reciprocal control of the two enzyme glycogen phosphorylase and glycogen synthase. Regulation is achieved via both allosteric regulation and covalent modification.

Blurred answer
Students have asked these similar questions
Here is my literature Beta Carotene HPLC analysis graph. Can you help me explain what each peak is at each retention time?   Thank You :D
I have a literature B-Carotene HPLC graph in which showcases a retention time of roughly 23.6 and 25.1.  Please help me compare my two different Anti-Oxidant Juice graphs. (Attached) The juices provided are: V8 Carrot Ginger Blend and V8 Original Blend Noticing the HPLC graphs I saw no peaks for the Original Blend for B-Carotene. However the Carrot Ginger Blend showed similar peaks --> Why is this reason? Please explain in terms of Retention time and Area (Under Curve).   Thank You!
Calculate pH of a solution prepared by dissolving 1.60g of sodium acetate, in 88.5 mL of 0.10 M acetic acid. Assume the volume change upon dissolving the sodium acetate is negligible. Ka is 1.75 x 10^-5
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Text book image
Human Physiology: From Cells to Systems (MindTap ...
Biology
ISBN:9781285866932
Author:Lauralee Sherwood
Publisher:Cengage Learning
Text book image
Basic Clinical Laboratory Techniques 6E
Biology
ISBN:9781133893943
Author:ESTRIDGE
Publisher:Cengage
Text book image
Ebk:Nutrition & Diet Therapy
Health & Nutrition
ISBN:9780357391747
Author:DEBRUYNE
Publisher:Cengage
Text book image
Essentials of Pharmacology for Health Professions
Nursing
ISBN:9781305441620
Author:WOODROW
Publisher:Cengage
Text book image
Principles Of Pharmacology Med Assist
Biology
ISBN:9781337512442
Author:RICE
Publisher:Cengage