Magnetars The astronomical object 4U014 + 61 has the distinction of creating the most powerful magnetic field ever observed. This object is referred to as a “magnetar” (a subclass of pulsars), and its magnetic field is 1.3 × 10 15 times greater than the Earth’s magnetic field. (a) Suppose a 2.5-m straight wire carrying a current of 1.1 A is placed in this magnetic field at an angle of 65° to the field lines. What force does this wire experience? (b) A field this strong can significantly change the behavior of an atom. To see this, consider an electron moving with a speed of 2.2 × 10 6 m/s. Compare the maximum magnetic force exerted on the electron to the electric force a proton exerts on an electron in a hydrogen atom. The radius of the hydrogen atom is 5.29 × 10 −11 m.
Magnetars The astronomical object 4U014 + 61 has the distinction of creating the most powerful magnetic field ever observed. This object is referred to as a “magnetar” (a subclass of pulsars), and its magnetic field is 1.3 × 10 15 times greater than the Earth’s magnetic field. (a) Suppose a 2.5-m straight wire carrying a current of 1.1 A is placed in this magnetic field at an angle of 65° to the field lines. What force does this wire experience? (b) A field this strong can significantly change the behavior of an atom. To see this, consider an electron moving with a speed of 2.2 × 10 6 m/s. Compare the maximum magnetic force exerted on the electron to the electric force a proton exerts on an electron in a hydrogen atom. The radius of the hydrogen atom is 5.29 × 10 −11 m.
Magnetars The astronomical object 4U014 + 61 has the distinction of creating the most powerful magnetic field ever observed. This object is referred to as a “magnetar” (a subclass of pulsars), and its magnetic field is 1.3 × 1015 times greater than the Earth’s magnetic field. (a) Suppose a 2.5-m straight wire carrying a current of 1.1 A is placed in this magnetic field at an angle of 65° to the field lines. What force does this wire experience? (b) A field this strong can significantly change the behavior of an atom. To see this, consider an electron moving with a speed of 2.2 × 106 m/s. Compare the maximum magnetic force exerted on the electron to the electric force a proton exerts on an electron in a hydrogen atom. The radius of the hydrogen atom is 5.29 × 10−11 m.
The figure (Figure 1) shows representations of six
thermodynamic states of the same ideal gas sample.
Figure
1 of 1
Part A
■Review | Constants
Rank the states on the basis of the pressure of the gas sample at each state.
Rank pressure from highest to lowest. To rank items as equivalent, overlap them.
▸ View Available Hint(s)
highest
0
☐ ☐ ☐ ☐ ☐ ☐
Reset
Help
B
F
A
D
E
The correct ranking cannot be determined.
Submit
Previous Answers
× Incorrect; Try Again; 4 attempts remaining
Provide Feedback
lowest
Next >
Part A
m
2πkT
) 3/2
Calculate the integral (v) = f vƒ (v)dv. The function f(v) describing the actual distribution of molecular speeds is called the Maxwell-Boltzmann distribution,
=
ƒ(v) = 4π (· v²e-mv²/2kT
. (Hint: Make the change of variable v² =x and use the tabulated integral foxne
integer and a is a positive constant.)
Express your answer in terms of the variables T, m, and appropriate constants.
-ax dx
n!
-
an+1
where n is a positive
(v)
=
ΕΠΙ ΑΣΦ
Submit Previous Answers Request Answer
?
× Incorrect; Try Again; 4 attempts remaining
Al Study Tools
Looking for some guidance? Let's work through a few related
practice questions before you go back to the real thing.
This won't impact your score, so stop at anytime and ask for
clarification whenever you need it.
Ready to give it a try?
Start
Chapter 22 Solutions
Physics, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (5th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.