Predict/Calculate Each of the 10 turns of wire in a vertical, rectangular loop carries a current of 0.22 A. The loop has a height of 8.0 cm and a width of 15 cm. A horizontal magnetic field of magnitude 0.050 T is oriented at an angle of θ = 65° relative to the normal to the plane of the loop, as indicated in Figure 22-48 . Find (a) the magnetic force on each side of the loop, (b) the net magnetic force on the loop, and (c) the magnetic torque on the loop. (d) If the loop can rotate about a vertical axis with only a small amount of friction, will it end up with an orientation given by θ = 0, θ = 90°, or θ = 180°? Explain. Figure 22-48 Problem 42
Predict/Calculate Each of the 10 turns of wire in a vertical, rectangular loop carries a current of 0.22 A. The loop has a height of 8.0 cm and a width of 15 cm. A horizontal magnetic field of magnitude 0.050 T is oriented at an angle of θ = 65° relative to the normal to the plane of the loop, as indicated in Figure 22-48 . Find (a) the magnetic force on each side of the loop, (b) the net magnetic force on the loop, and (c) the magnetic torque on the loop. (d) If the loop can rotate about a vertical axis with only a small amount of friction, will it end up with an orientation given by θ = 0, θ = 90°, or θ = 180°? Explain. Figure 22-48 Problem 42
Predict/Calculate Each of the 10 turns of wire in a vertical, rectangular loop carries a current of 0.22 A. The loop has a height of 8.0 cm and a width of 15 cm. A horizontal magnetic field of magnitude 0.050 T is oriented at an angle of θ = 65° relative to the normal to the plane of the loop, as indicated in Figure 22-48. Find (a) the magnetic force on each side of the loop, (b) the net magnetic force on the loop, and (c) the magnetic torque on the loop. (d) If the loop can rotate about a vertical axis with only a small amount of friction, will it end up with an orientation given by θ = 0, θ = 90°, or θ = 180°? Explain.
The figure (Figure 1) shows representations of six
thermodynamic states of the same ideal gas sample.
Figure
1 of 1
Part A
■Review | Constants
Rank the states on the basis of the pressure of the gas sample at each state.
Rank pressure from highest to lowest. To rank items as equivalent, overlap them.
▸ View Available Hint(s)
highest
0
☐ ☐ ☐ ☐ ☐ ☐
Reset
Help
B
F
A
D
E
The correct ranking cannot be determined.
Submit
Previous Answers
× Incorrect; Try Again; 4 attempts remaining
Provide Feedback
lowest
Next >
Part A
m
2πkT
) 3/2
Calculate the integral (v) = f vƒ (v)dv. The function f(v) describing the actual distribution of molecular speeds is called the Maxwell-Boltzmann distribution,
=
ƒ(v) = 4π (· v²e-mv²/2kT
. (Hint: Make the change of variable v² =x and use the tabulated integral foxne
integer and a is a positive constant.)
Express your answer in terms of the variables T, m, and appropriate constants.
-ax dx
n!
-
an+1
where n is a positive
(v)
=
ΕΠΙ ΑΣΦ
Submit Previous Answers Request Answer
?
× Incorrect; Try Again; 4 attempts remaining
Al Study Tools
Looking for some guidance? Let's work through a few related
practice questions before you go back to the real thing.
This won't impact your score, so stop at anytime and ask for
clarification whenever you need it.
Ready to give it a try?
Start
Chapter 22 Solutions
Physics, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (5th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.