Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 22, Problem 77P

a.

To determine

The magnitude and the direction of the electric field at x=0.40m .

The electric field E=203.6kN/C pointing at θ=56.3° from the x axis.

Given:

  Physics for Scientists and Engineers, Chapter 22, Problem 77P , additional homework tip  1

The charges are placed as shown in the figure. The first plane at y=0.6m . The second plane at x=1.0m . The spherical shell centered at the intersection of the planes at point (1.0,-0.6) in the x-y plane.

The surface charge densities are

  σ1=3.0μnC/m2

  σ2=2.0μnC/m2

  σ3=3.0μC/m3

Formula Used:

Electric field

  E=σ2εor^

E is the electric field.

  σ is the surface charge density.

  r^ is the unit vector in the direction normal to the charged plane.

  εo is the permittivity of free space.

The resultant electric field at point is E=E1+E2+Eshpere

Calculations:

The resultant electric field at point is E=E1+E2+Eshpere

  E=σ2εor^

Electric field at point 1 due to sphere.

As the point is inside the sphere the electric field is zero.

  Eshpere=0

Electric field at point 1 due to plane 1

Substituting values

  E1=3.0μnC/m22(8.85×1012C2/N.m2)j ^

  E1=(169.4kN/C)j ^

The electric field at point 1 due to plane 2.

  E2=-2.0μnC/m22(8.85×1012C2/N.m2)( i ^)

  E2=(112.9kN/C) i ^

Substituting in the equation

The resultant electric field at point is E=E1+E2+Eshpere

Substituting

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^ +0

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^

The magnitude of the electric field is

   E=(x2+y2)

  E=(112.9kN/C)2+(169.4kN/C)2

  E=203.6kN/C2

Direction:

  θ=tan1(yx)

  θ=tan1(169.4kN/C112.9kN/C)=56.31°

Conclusion:

The electric field E=203.6kN/C pointing at θ=56.3° from the x axis.

b.

The magnitude and the direction of the electric field at x=2.50m .

The electric field E=263kN/C pointing at θ=153° from the x axis.

Given:

  Physics for Scientists and Engineers, Chapter 22, Problem 77P , additional homework tip  2

The charges are placed as shown in the figure. The first plane at y=0.6m . The second plane at x=1.0m . The spherical shell centered at the intersection of the planes at point (1.0,-0.6) in the x-y plane.

The surface charge densities are

  σ1=3.0μnC/m2

  σ2=2.0μnC/m2

  σ3=3.0μC/m3

Formula Used:

Electric field

  E=σ2εor^

E is the electric field.

  σ is the surface charge density.

  r^ is the unit vector in the direction normal to the charged plane.

  εo is the permittivity of free space.

The resultant electric field at point is E=E1+E2+Eshpere

Calculations:

The resultant electric field at point is E=E1+E2+Eshpere

  E=σ2εor^

Electric field at point 1 due to sphere.

  E =(kQspherer2)r^ where Q is the charge in the sphere.

Where r^ is a unit vector pointing from (1.0m,-0.6m) to (2.50m,0)

  Qsphere=σAsphere

  =4πσR2

  Qsphere=4π(3.0μC/m2)(1.0m)2

  Qsphere=37.30μC

  r^=0.9285 i ^+0.3714j ^

  Esphere=(8.988×109N.m2/C2)(37.70μC)(1.616m)2r^

  Esphere=(129.8kN/C)(0.9285 i ^+0.3714j ^)

  Esphere=(120.5kN/C) i ^+(-48.22kN/C)j ^

Electric field at point 1 due to plane 1

Substituting values in the formula E=σ2εor^

  E1=3.0μnC/m22(8.85×1012C2/N.m2)j ^

  E1=(169.4kN/C)j ^

The electric field at point 1 due to plane 2.

  E2=-2.0μnC/m22(8.85×1012C2/N.m2)( i ^)

  E2=(112.9kN/C) i ^

Substituting in the equation

The resultant electric field at point is E=E1+E2+Eshpere

Substituting

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^ +(120.5kN/C) i ^+(-48.22kN/C)j ^

  E=(233.5kN/C) i ^ +(121.2kN/C)j ^

The magnitude of the electric field is

  E=(x2+y2)

  E=(233.5kN/C)2+(121.2kN/C)2

  E=263kN/C

Direction:

  θ=tan1(yx)

  θ=tan1(121.2kN/C-233.5kN/C)=153°

Conclusion:

The electric field E=263kN/C pointing at θ=153° from the x axis.

a.

Expert Solution
Check Mark

Answer to Problem 77P

The electric field E=203.6kN/C pointing at θ=56.3° from the x axis.

Explanation of Solution

Given:

  Physics for Scientists and Engineers, Chapter 22, Problem 77P , additional homework tip  3

The charges are placed as shown in the figure. The first plane at y=0.6m . The second plane at x=1.0m . The spherical shell centered at the intersection of the planes at point (1.0,-0.6) in the x-y plane.

The surface charge densities are

  σ1=3.0μnC/m2

  σ2=2.0μnC/m2

  σ3=3.0μC/m3

Formula Used:

Electric field

  E=σ2εor^

E is the electric field.

  σ is the surface charge density.

  r^ is the unit vector in the direction normal to the charged plane.

  εo is the permittivity of free space.

The resultant electric field at point is E=E1+E2+Eshpere

Calculations:

The resultant electric field at point is E=E1+E2+Eshpere

  E=σ2εor^

Electric field at point 1 due to sphere.

As the point is inside the sphere the electric field is zero.

  Eshpere=0

Electric field at point 1 due to plane 1

Substituting values

  E1=3.0μnC/m22(8.85×1012C2/N.m2)j ^

  E1=(169.4kN/C)j ^

The electric field at point 1 due to plane 2.

  E2=-2.0μnC/m22(8.85×1012C2/N.m2)( i ^)

  E2=(112.9kN/C) i ^

Substituting in the equation

The resultant electric field at point is E=E1+E2+Eshpere

Substituting

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^ +0

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^

The magnitude of the electric field is

   E=(x2+y2)

  E=(112.9kN/C)2+(169.4kN/C)2

  E=203.6kN/C2

Direction:

  θ=tan1(yx)

  θ=tan1(169.4kN/C112.9kN/C)=56.31°

Conclusion:

The electric field E=203.6kN/C pointing at θ=56.3° from the x axis.

b.

To determine

The magnitude and the direction of the electric field at x=2.50m .

The electric field E=263kN/C pointing at θ=153° from the x axis.

Given:

  Physics for Scientists and Engineers, Chapter 22, Problem 77P , additional homework tip  4

The charges are placed as shown in the figure. The first plane at y=0.6m . The second plane at x=1.0m . The spherical shell centered at the intersection of the planes at point (1.0,-0.6) in the x-y plane.

The surface charge densities are

  σ1=3.0μnC/m2

  σ2=2.0μnC/m2

  σ3=3.0μC/m3

Formula Used:

Electric field

  E=σ2εor^

E is the electric field.

  σ is the surface charge density.

  r^ is the unit vector in the direction normal to the charged plane.

  εo is the permittivity of free space.

The resultant electric field at point is E=E1+E2+Eshpere

Calculations:

The resultant electric field at point is E=E1+E2+Eshpere

  E=σ2εor^

Electric field at point 1 due to sphere.

  E =(kQspherer2)r^ where Q is the charge in the sphere.

Where r^ is a unit vector pointing from (1.0m,-0.6m) to (2.50m,0)

  Qsphere=σAsphere

  =4πσR2

  Qsphere=4π(3.0μC/m2)(1.0m)2

  Qsphere=37.30μC

  r^=0.9285 i ^+0.3714j ^

  Esphere=(8.988×109N.m2/C2)(37.70μC)(1.616m)2r^

  Esphere=(129.8kN/C)(0.9285 i ^+0.3714j ^)

  Esphere=(120.5kN/C) i ^+(-48.22kN/C)j ^

Electric field at point 1 due to plane 1

Substituting values in the formula E=σ2εor^

  E1=3.0μnC/m22(8.85×1012C2/N.m2)j ^

  E1=(169.4kN/C)j ^

The electric field at point 1 due to plane 2.

  E2=-2.0μnC/m22(8.85×1012C2/N.m2)( i ^)

  E2=(112.9kN/C) i ^

Substituting in the equation

The resultant electric field at point is E=E1+E2+Eshpere

Substituting

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^ +(120.5kN/C) i ^+(-48.22kN/C)j ^

  E=(233.5kN/C) i ^ +(121.2kN/C)j ^

The magnitude of the electric field is

  E=(x2+y2)

  E=(233.5kN/C)2+(121.2kN/C)2

  E=263kN/C

Direction:

  θ=tan1(yx)

  θ=tan1(121.2kN/C-233.5kN/C)=153°

Conclusion:

The electric field E=263kN/C pointing at θ=153° from the x axis.

b.

Expert Solution
Check Mark

Answer to Problem 77P

The electric field E=263kN/C pointing at θ=153° from the x axis.

Explanation of Solution

Given:

  Physics for Scientists and Engineers, Chapter 22, Problem 77P , additional homework tip  5

The charges are placed as shown in the figure. The first plane at y=0.6m . The second plane at x=1.0m . The spherical shell centered at the intersection of the planes at point (1.0,-0.6) in the x-y plane.

The surface charge densities are

  σ1=3.0μnC/m2

  σ2=2.0μnC/m2

  σ3=3.0μC/m3

Formula Used:

Electric field

  E=σ2εor^

E is the electric field.

  σ is the surface charge density.

  r^ is the unit vector in the direction normal to the charged plane.

  εo is the permittivity of free space.

The resultant electric field at point is E=E1+E2+Eshpere

Calculations:

The resultant electric field at point is E=E1+E2+Eshpere

  E=σ2εor^

Electric field at point 1 due to sphere.

  E =(kQspherer2)r^ where Q is the charge in the sphere.

Where r^ is a unit vector pointing from (1.0m,-0.6m) to (2.50m,0)

  Qsphere=σAsphere

  =4πσR2

  Qsphere=4π(3.0μC/m2)(1.0m)2

  Qsphere=37.30μC

  r^=0.9285 i ^+0.3714j ^

  Esphere=(8.988×109N.m2/C2)(37.70μC)(1.616m)2r^

  Esphere=(129.8kN/C)(0.9285 i ^+0.3714j ^)

  Esphere=(120.5kN/C) i ^+(-48.22kN/C)j ^

Electric field at point 1 due to plane 1

Substituting values in the formula E=σ2εor^

  E1=3.0μnC/m22(8.85×1012C2/N.m2)j ^

  E1=(169.4kN/C)j ^

The electric field at point 1 due to plane 2.

  E2=-2.0μnC/m22(8.85×1012C2/N.m2)( i ^)

  E2=(112.9kN/C) i ^

Substituting in the equation

The resultant electric field at point is E=E1+E2+Eshpere

Substituting

  E=(112.9kN/C) i ^ +(169.4kN/C)j ^ +(120.5kN/C) i ^+(-48.22kN/C)j ^

  E=(233.5kN/C) i ^ +(121.2kN/C)j ^

The magnitude of the electric field is

  E=(x2+y2)

  E=(233.5kN/C)2+(121.2kN/C)2

  E=263kN/C

Direction:

  θ=tan1(yx)

  θ=tan1(121.2kN/C-233.5kN/C)=153°

Conclusion:

The electric field E=263kN/C pointing at θ=153° from the x axis.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Suppose there are two transformers between your house and the high-voltage transmission line that distributes the power. In addition, assume your house is the only one using electric power. At a substation the primary of a step-down transformer (turns ratio = 1:23) receives the voltage from the high-voltage transmission line. Because of your usage, a current of 51.1 mA exists in the primary of the transformer. The secondary is connected to the primary of another step- down transformer (turns ratio = 1:36) somewhere near your house, perhaps up on a telephone pole. The secondary of this transformer delivers a 240-V emf to your house. How much power is your house using? Remember that the current and voltage given in this problem are rms values.
In some places, insect "zappers," with their blue lights, are a familiar sight on a summer's night. These devices use a high voltage to electrocute insects. One such device uses an ac voltage of 3970 V, which is obtained from a standard 120-V outlet by means of a transformer. If the primary coil has 27 turns, how many turns are in the secondary coil? hel lp?
Hi,  Does Quantum physics theory means all branches for example quantum relativity, Quantum mechanics, Quantum field theory, and string theory? Can you explain each one of them? Best

Chapter 22 Solutions

Physics for Scientists and Engineers

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY