
Concept explainers
a.
The magnitude and the direction of the electric field at
The electric field
Given:
The charges are placed as shown in the figure. The first plane at
The surface charge densities are
Formula Used:
Electric field
E is the electric field.
The resultant electric field at point is
Calculations:
The resultant electric field at point is
Electric field at point 1 due to sphere.
As the point is inside the sphere the electric field is zero.
Electric field at point 1 due to plane 1
Substituting values
The electric field at point 1 due to plane 2.
Substituting in the equation
The resultant electric field at point is
Substituting
The magnitude of the electric field is
Direction:
Conclusion:
The electric field
b.
The magnitude and the direction of the electric field at
The electric field
Given:
The charges are placed as shown in the figure. The first plane at
The surface charge densities are
Formula Used:
Electric field
E is the electric field.
The resultant electric field at point is
Calculations:
The resultant electric field at point is
Electric field at point 1 due to sphere.
Where
Electric field at point 1 due to plane 1
Substituting values in the formula
The electric field at point 1 due to plane 2.
Substituting in the equation
The resultant electric field at point is
Substituting
The magnitude of the electric field is
Direction:
Conclusion:
The electric field
a.

Answer to Problem 77P
The electric field
Explanation of Solution
Given:
The charges are placed as shown in the figure. The first plane at
The surface charge densities are
Formula Used:
Electric field
E is the electric field.
The resultant electric field at point is
Calculations:
The resultant electric field at point is
Electric field at point 1 due to sphere.
As the point is inside the sphere the electric field is zero.
Electric field at point 1 due to plane 1
Substituting values
The electric field at point 1 due to plane 2.
Substituting in the equation
The resultant electric field at point is
Substituting
The magnitude of the electric field is
Direction:
Conclusion:
The electric field
b.
The magnitude and the direction of the electric field at
The electric field
Given:
The charges are placed as shown in the figure. The first plane at
The surface charge densities are
Formula Used:
Electric field
E is the electric field.
The resultant electric field at point is
Calculations:
The resultant electric field at point is
Electric field at point 1 due to sphere.
Where
Electric field at point 1 due to plane 1
Substituting values in the formula
The electric field at point 1 due to plane 2.
Substituting in the equation
The resultant electric field at point is
Substituting
The magnitude of the electric field is
Direction:
Conclusion:
The electric field
b.

Answer to Problem 77P
The electric field
Explanation of Solution
Given:
The charges are placed as shown in the figure. The first plane at
The surface charge densities are
Formula Used:
Electric field
E is the electric field.
The resultant electric field at point is
Calculations:
The resultant electric field at point is
Electric field at point 1 due to sphere.
Where
Electric field at point 1 due to plane 1
Substituting values in the formula
The electric field at point 1 due to plane 2.
Substituting in the equation
The resultant electric field at point is
Substituting
The magnitude of the electric field is
Direction:
Conclusion:
The electric field
Want to see more full solutions like this?
Chapter 22 Solutions
Physics for Scientists and Engineers
- Please help me on the following question (Please refer to image below)An Olympic lifter (m = 103kg) is holding a lift with a mass of 350 kg. The barexerts a purely vertical force that is equally distributed between both hands. Each arm has amass of 9 kg, are 0.8m long and form a 40° angle with the horizontal. The CoM for each armis 0.5 m from hand. Assuming the lifter is facing us in the diagram below, his right deltoidinserts 14cm from the shoulder at an angle of 13° counter-clockwise from the humerus.A) You are interested in calculating the force in the right deltoid. Draw a free body diagramof the right arm including the external forces, joint reaction forces, a coordinate system andstate your assumptions.B) Find the force exerted by the right deltoidC) Find the shoulder joint contact force. Report your answer using the magnitude and directionof the shoulder force vector.arrow_forwardI need help with part B. I cant seem to get the correct answer. Please walk me through what youre doing to get to the answer and what that could bearrow_forwardQuestion 6: Chlorine is widely used to purify municipal water supplies and to treat swimming pool waters. Suppose that the volume of a particular sample of Cl₂ gas is 8.70 L at 895 torr and 24°C. (a) How many grams of Cl₂ are in the sample? ⚫ Atomic mass of CI = 35.453 g/mol • Molar mass of Cl₂ = 2 x 35.453 = 70.906 g/mol Solution: Use the Ideal Gas Law: Step 1: Convert Given Values • Pressure: P = 895 torr → atm PV= = nRT 1 P = 895 × = 1.1789 atm 760 • Temperature: Convert to Kelvin: T24273.15 = 297.15 K • Gas constant: R = 0.0821 L atm/mol. K Volume: V = 8.70 L Step 2: Solve for n . PV n = RT n = (1.1789)(8.70) (0.0821)(297.15) 10.25 n = = 0.420 mol 24.405 Step 3: Calculate Mass of Cl₂ Final Answer: 29.78 g of Cl₂. mass nx M mass= (0.420)(70.906) mass= 29.78 garrow_forward
- please help me solve this questions. show all calculations and a good graph too :)arrow_forwardWhat is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.) 5.0 με 4.0 με 2.0 με + 1.0 m 1.0 m -40 με 2.0 μCarrow_forwardWhat is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µCarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





