
Concept explainers
(a)
The total and individual charge on the inner and outer surface of the spherical shell.
(a)

Explanation of Solution
Given:
A positive point charge of
Formula used:
The positive charge at the center of the spherical sphere induces a charge of same magnitude but different in polarity on the inner surface. The negative charge on the inner surface induces a positive charge of same magnitude on the outer surface.
Write the expression for the surface charge density
Here,
Write the expression for the surface area of the square sheet.
Here
Substitute
Forinner surface of the spherical shell.
The induced charge on the inner surface has same magnitude of the point charge .The polarity of the charge is opposite to the point charge.
Calculation:
Substitute
For outer surface of the spherical shell
The induced charge on the outer surface has same magnitude of the point charge .The polarity of the charge is same to the point charge
Substitute
Conclusion:
Thus, the total charge on the inner surface is
(b)
The electric field due to a positive point charge located at the spherical shell.
(b)

Explanation of Solution
Given:
A positive point charge of
Formula used:
Write the expression for Gauss’s law.
Here,
Substitute
Here
Rearrange the above equation for
Substitute
Calculation:
For
Substitute
For
Substitute
For
Substitute
Conclusion:
Thus, the electric field of the spherical shell for
(c)
The electric field and surface charge density of the spherical shell.
(c)

Explanation of Solution
Given:
A positive point charge of
Formula used:
The positive charge at the center of the spherical sphere induces a charge of same magnitude but different in polarity on the inner surface. The negative charge on the inner surface induces a positive charge of same magnitude on the outer surface.
Write the expression for the surface charge density
Here,
Write the expression for the surface area of the square sheet.
Here
Substitute
For inner surface of the spherical shell.
The induced charge on the inner surface has same magnitude of the point charge .The polarity of the charge is opposite to the point charge
Write the expression for Gauss’s law.
Here,
Substitute
Here
Rearrange the above equation for
Substitute
Calculation:
For inner surface
Substitute for
For outer surface of the spherical shell
Write the expression for surface charge.
Substitute
For outer surface.
Substitute for
For
Substitute
For
Substitute
For
Substitute
Conclusion:
Thus, the total charge on the inner surface is
Want to see more full solutions like this?
Chapter 22 Solutions
Physics for Scientists and Engineers
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





