
Concept explainers
(a)
The magnitude and the direction of the electric field for a non-
(a)

Explanation of Solution
Given:
The diameter of the sphere is
The volume charge density of the sphere is
The diameter of the shell is
The surface charge density of the sphere is
Formula used:
Write the expression of the electric field at any point for a non-conducting sphere.
Here,
Write the expression for charge for a sphere.
Here,
Substitute
Here,
Substitute
Write the above expression when
Simplify the above equation.
Write the expression for the electric field at any point due to a spherical shell.
Here,
Write the expression charge of a spherical shell.
Here,
Substitute
Here,
Substitute
Write the expression for the resultant electric field at any point in space due to a spherical shell and a solid sphere.
Calculation:
The electric field at point
Substitute
The direction of
The electric field at point
The electric field at point
Substitute
Conclusion:
Thus, the electric magnitude and the direction of electric field at point
(b)
The magnitude and the direction of the electric field for a non-conducting spherical shell concentric with a solid sphere.
(b)

Explanation of Solution
Given:
The diameter of the sphere is
The volume charge density of the sphere is
The diameter of the shell is
The surface charge density of the sphere is
Formula used:
Write the expression of the electric field at any point for a non-conducting sphere.
Here,
Write the expression for charge for a sphere.
Here,
Substitute
Here,
Substitute
Write the above expression when
Simplify the above equation.
Write the expression for the electric field at any point due to a spherical shell.
Here,
Write the expression charge of a spherical shell.
Here,
Substitute
Here,
Substitute
Resultant electric field at any point in space due to a spherical shell and a solid sphere.
Calculation:
The electric field at point
Substitute
The direction of
The electric field at point
The electric field at point
Substitute
Conclusion:
Thus, the electric magnitude and the direction of electric field at point
(c)
The magnitude and the direction of the electric field for a non-conducting spherical shell concentric with a solid sphere.
(c)

Explanation of Solution
Given:
The diameter of the sphere is
The volume charge density of the sphere is
The diameter of the shell is
The surface charge density of the sphere is
Formula used:
Write the expression of the electric field at any point for a non-conducting sphere.
Here,
Write the expression for charge for a sphere.
Here,
Substitute
Here,
Substitute
Write the above expression when
Simplify the above equation.
Write the expression for the electric field at any point due to a spherical shell.
Here,
Write the expression charge of a spherical shell.
Here,
Substitute
Here,
Substitute
Resultant electric field at any point in space due to a spherical shell and a solid sphere.
Calculation:
Write the expression for distance between the points
Write the direction for
When the above value is subtracted from
Write the expression for unit vector along
Substitute
The electric field at point
Substitute
The electric field at point
Substitute
The electric field at point
Substitute
The magnitude of electric field at
Conclusion:
Thus, the electric magnitude and the direction of electric field at point
Want to see more full solutions like this?
Chapter 22 Solutions
Physics for Scientists and Engineers
- 3. If the force of gravity stopped acting on the planets in our solar system, what would happen? a) They would spiral slowly towards the sun. b) They would continue in straight lines tangent to their orbits. c) They would continue to orbit the sun. d) They would fly straight away from the sun. e) They would spiral slowly away from the sun. 4. 1 The free-body diagram of a wagon being pulled along a horizontal surface is best represented by A F N B C 0 Ꭰ FN E a) A b) B c) C app app The app 10 app d) e) ס ח D E 10 apparrow_forwardPls help ASAParrow_forwardPls help asaparrow_forward
- Pls help asaparrow_forwardThe acceleration of an object sliding along a frictionless ramp is inclined at an angle 0 is 9. a) g tano b) g cose c) g sino 10. d) g e) zero A 1.5 kg cart is pulled with a force of 7.3 N at an angle of 40° above the horizontal. If a kinetic friction force of 3.2 N acts against the motion, the cart's acceleration along the horizontal surface will be a) 5.0 m/s² b) 1.6 m/s² c) 2.4 m/s² 11. d) 1.0 m/s² e) 2.7 m/s² What is the net force acting on an object with a mass of 10 kg moving at a constant velocity of 10 m/s [North]? a) 100 N [North] b) 100 N [South] 10 N [North} d) 10 N [South] e) None of these.arrow_forwardModified True/False - indicate whether the sentence or statement is true or false. If the statement is false, correct the statement to make it true. 12. An object in uniform circular motion has a constant velocity while experiencing centripetal acceleration. 13. An object travelling in uniform circular motion experiences an outward centrifugal force that tends to pull the object out of the circular path. 14. An object with less inertia can resist changes in motion more than an object with more inertia. 15. For an object sliding on a horizontal surface with a horizontal applied force, the frictional force will always increase as the applied force increases.arrow_forward
- Pls help asaparrow_forwardAnswer the given question showing step by step by and all necessary working out.arrow_forward1. The piston in the figure has a mass of 0.5 kg. The infinitely long cylinder is pushed upward at a constant velocity. The diameters of the cylinder and piston are 10 cm and 9 cm, respectively, and there is oil between them with v = 10⁻⁴ m^2/s and γ = 8,000 N/m³. At what speed must the cylinder ascend for the piston to remain at rest?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





