(a)
The net work done by the gas.
(a)
Answer to Problem 73AP
The net work done by the gas is
Explanation of Solution
In the figure P22.73, the curve
Write the expression for the work done on the gas during path
Here,
Write the expression for the work done on the gas during path
Here,
Since the process along
Here,
Write the expression for the total work done on the gas.
Conclusion:
From figure,
Substitute
Substitute
Substitute
Therefore, the net work done by the gas is
(b)
The energy added to the gas by heat.
(b)
Answer to Problem 73AP
The energy added to the gas by heat is
Explanation of Solution
In figure
Write the expression for the heat absorbed by the gas in isothermal process.
Here,
Substitute
Write the expression for the specific heat capacity at constant volume of monoatomic gas.
Here,
Write the expression for the specific heat capacity at constant pressure of monoatomic gas.
Here,
Apply ideal gas equation at point
Here,
Rearrange above equation to get
Since
Here,
Substitute
Apply ideal gas equation at point
Here,
Write the expression for the energy absorbed by heat during
Here,
Write the expression for the total energy absorbed by heat.
Here,
Conclusion:
Substitute
Substitute
Since
Substitute
Substitute
Substitute
Therefore, the energy added to the gas by heat is
(c)
The energy exhausted from the gas by heat.
(c)
Answer to Problem 73AP
The energy exhausted from the gas by heat is
Explanation of Solution
Write the expression for the energy exhausted from the gas by heat.
Here,
The specific heat capacity of the gas at constant pressure is
Substitute
Apply ideal gas equation during the isobaric process
Substitute (XVII) in equation (XVI) to get
Conclusion:
Substitute
Then energy exhausted from the gas by heat is,
Therefore, the energy exhausted from the gas by heat is
(d)
The efficiency of the cycle.
(d)
Answer to Problem 73AP
The efficiency of the cycle is
Explanation of Solution
Write the expression for the efficiency of the cycle.
Here,
The total heat exhausted is equal to the sum of the heat liberated through the process described by the curves
Write the expression for the total heat exhausted at hot reservoir.
Substitute (XX) in (XIX) to get
Conclusion:
From part(b),
Substitute
Convert
Therefore the efficiency of the cycle is
(e)
The comparison for the efficiency of the engine with efficiency of Carnot engine operating between same temperature extremes.
(e)
Answer to Problem 73AP
The efficiency of the cycle is much lower than that of a Carnot engine operating between the same temperature extremes.
Explanation of Solution
The temperature of the cold reservoir is equal to temperature at point
From part(a).
Write the expression for the efficiency Carnot engine.
Here,
Conclusion:
Substitute
Efficiency of the cycle is only
Compared to efficiency of Carnot engine , efficiency of the cycle is much lower.
Therefore, the efficiency of the cycle is much lower than that of a Carnot engine operating between the same temperature extremes.
Want to see more full solutions like this?
Chapter 22 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- A hydrogen atom has just a single electron orbiting the nucleus, which happens to be a single proton without any neutrons. The proton is positively charged, the electron negatively, but both with the same magnitude of charge given by e=1.602x10-19C. The mass of an electron is 9.11x10-31kg, and the proton is 1.67x10-27kg. Find the ratio of the electrostatic to the gravitational force of attraction between the electron and the proton in hydrogen. \arrow_forwardWhat is the third law pair to the normal force as you sit in a chair? What effect does the sun's pull on earth have in terms of third law pairs?arrow_forwardUsing Newton's 2nd law, show that all objects subject to the pull of gravity alone should fall at the same rate. What is that rate?arrow_forward
- No chatgpt pls will upvotearrow_forwardA cart on wheels (assume frictionless) with a mass of 20 kg is pulled rightward with a 50N force. What is its acceleration?arrow_forwardLight travels through a vacuum at a speed of 2.998 x 108m/s. Determine the speed of light in the following media: crown glass (n = 1.52)arrow_forward
- 2.62 Collision. The engineer of a passenger train traveling at 25.0 m/s sights a freight train whose caboose is 200 m ahead on the same track (Fig. P2.62). The freight train is traveling at 15.0 m/s in the same direction as the passenger train. The engineer of the passenger train immediately applies the brakes, causing a constant acceleration of 0.100 m/s² in a direction opposite to the train's velocity, while the freight train continues with constant speed. Take x = 0 at the location of the front of the passenger train when the engineer applies the brakes. (a) Will the cows nearby witness a collision? (b) If so, where will it take place? (c) On a single graph, sketch the positions of the front of the pas- senger train and the back of the freight train.arrow_forwardCan I get help with how to calculate total displacement? The answer is 78.3x-4.8yarrow_forward2.70 Egg Drop. You are on the Figure P2.70 roof of the physics building, 46.0 m above the ground (Fig. P2.70). Your physics professor, who is 1.80 m tall, is walking alongside the building at a constant speed of 1.20 m/s. If you wish to drop an egg on your profes- sor's head, where should the profes- sor be when you release the egg? Assume that the egg is in free fall. 2.71 CALC The acceleration of a particle is given by ax(t) = -2.00 m/s² +(3.00 m/s³)t. (a) Find the initial velocity Vox such that v = 1.20 m/s 1.80 m 46.0 marrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning