(a)
The rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
(a)
Answer to Problem 33P
The rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
Explanation of Solution
Given information:The rate of work output of the engine is
Formula to calculate the carnot efficiency of the engine.
Here,
The actual efficiency of the engine is equal to two-thirds of the efficiency of the carnot engine.
Here,
Substitute
Formula to calculate the rate of heat input to the engine.
Here,
Formula to calculate the rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
Here,
Substitute
Substitute
Substitute
Thus, the rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
Conclusion:
Therefore, the rate at which the station exhaust energy by heat as a function of the fuel combustion temperature
(b)
The effect on the amount of the energy if the firebox is modified to run hotter by using more advanced combustion technology.
(b)
Answer to Problem 33P
The amount of the energy exhaust change if the firebox is modified to run hotter by using more advanced combustion technology because the exhaust power decreases as the fire box temperature increases.
Explanation of Solution
If the firebox is modified to run hotter by using more advanced combustion technology, the amount of the energy exhaust change because the exhaust power is inversely proportional to the fire box temperature. So, the exhaust power decreases as the fire box temperature increases.
Conclusion:
The amount of the energy exhaust change if the firebox is modified to run hotter by using more advanced combustion technology because the exhaust power decreases as the fire box temperature increases.
(c)
The exhaust power for
(c)
Answer to Problem 33P
The exhaust power for
Explanation of Solution
Given information: The rate of work output of the engine is
From equation (4), the formula to calculate the exhaust power for
Substitute
Thus, the exhaust power for
Conclusion:
Therefore, the exhaust power for
(d)
The value of
(d)
Answer to Problem 33P
The value of
Explanation of Solution
Given information: The rate of work output of the engine is
Write the expression for the exhaust power whuch would be only half as large as in part (c).
Here,
Substitute
Thus, the exhaust power whuch would be only half as large as in part (c) is
From equation (4), the formula to calculate the value of
Substitute
Thus, the value of
Conclusion:
Therefore, the value of
(e)
The value of
(e)
Answer to Problem 33P
The value of
Explanation of Solution
Given information: The rate of work output of the engine is
Write the expression for the exhaust power whuch would be one-fourth as large as in part (c).
Here,
Substitute
Thus, the exhaust power whuch would be one-fourth as large as in part (c) is
From equation (4), the formula to calculate the value of
Substitute
Thus, the value of
Conclusion:
Therefore, the value of
Want to see more full solutions like this?
Chapter 22 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- No chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forwardCheckpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forward
- What is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forward
- No chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning